Genetics of Type 2 Diabetes and Clinical Utility
Abstract
:1. Introduction
2. Genetics of Type 2 Diabetes
Location | Reported Gene(s) | SNP | Risk Allele | Other Allele | Risk Allele Frequency | OR (95% CI) |
---|---|---|---|---|---|---|
10q25.2 | TCF7L2 | rs7903146 | T | C | 0.30 | 1.40 (1.35–1.46) |
9q21.31 | TLE4 | rs17791513 | A | G | 0.93 | 1.21 (1.13–1.31) |
6p22.3 | CDKAL1 | rs7756992 | G | A | 0.26 | 1.20 (1.16–1.25) |
9p21.3 | CDKN2A, CDKN2B | rs10811661 | T | C | 0.82 | 1.18 (1.13–1.24) |
8q24.11 | SLC30A8 | rs3802177 | G | A | 0.70 | 1.16 (1.11–1.22) |
12q14.3 | HMGA2 | rs2261181 | T | C | 0.09 | 1.16 (1.10–1.23) |
3p25.2 | PPARG | rs1801282 | C | G | 0.88 | 1.16 (1.10–1.23) |
10q23.33 | HHEX, IDE | rs1111875 | C | T | 0.58 | 1.15 (1.11–1.19) |
2p21 | THADA | rs10203174 | C | T | 0.90 | 1.15 (1.08–1.21) |
16q12.2 | FTO | rs9936385 | C | T | 0.39 | 1.13 (1.09–1.18) |
3q27.2 | IGF2BP2 | rs4402960 | T | G | 0.31 | 1.13 (1.09–1.17) |
11q13.4 | ARAP1, CENTD2 | rs1552224 | A | C | 0.83 | 1.13 (1.08–1.19) |
6p21.2 | KCNK16 | rs1535500 | T | G | 0.59 | 1.13 (1.08–1.19) |
7p21.2 | DGKB | rs17168486 | T | C | 0.19 | 1.13 (1.07–1.19) |
5q13.3 | ZBED3 | rs6878122 | G | A | 0.25 | 1.13 (1.07–1.18) |
17q12 | HNF1B | rs4430796 | G | A | 0.53 | 1.13 (1.07–1.09) |
7p15.1 | JAZF1 | rs849135 | G | A | 0.52 | 1.12 (1.08–1.17) |
12q24.31 | HNF1A | rs12427353 | G | T | 0.77 | 1.12 (1.07–1.18) |
11q14.3 | MTNR1B | rs10830963 | G | C | 0.27 | 1.11 (1.06–1.16) |
7q32.3 | KLF14 | rs13233731 | G | A | 0.49 | 1.10 (1.06–1.13) |
1p12 | NOTCH2 | rs10923931 | T | G | 0.11 | 1.10 (1.04–1.17) |
1p32.3 | FAF1 | rs17106184 | G | A | 0.92 | 1.10 (1.07–1.14) |
8p11.21 | ANK1 | rs516946 | C | T | 0.77 | 1.10 (1.06–1.15) |
13q31.1 | SPRY2 | rs1359790 | G | A | 0.73 | 1.10 (1.05–1.14) |
3p24.3 | UBE2E2 | rs7612463 | C | A | 0.87 | 1.10 (1.04–1.16) |
10q22.3 | ZMIZ1 | rs12571751 | A | G | 0.51 | 1.09 (1.06–1.13) |
4p16.1 | WFS1 | rs4458523 | G | T | 0.59 | 1.09 (1.06–1.13) |
3q21.1 | ADCY5 | rs11717195 | T | C | 0.78 | 1.09 (1.05–1.14) |
12q21.1 | TSPAN8 | rs7955901 | C | T | 0.47 | 1.09 (1.05–1.13) |
15q25.1 | ZFAND6 | rs11634397 | G | A | 0.64 | 1.09 (1.05–1.13) |
2q36.3 | IRS1 | rs2943640 | C | A | 0.63 | 1.09 (1.05–1.13) |
11p15.4 | KCNQ1 | rs163184 | G | T | 0.50 | 1.09 (1.04–1.13) |
12p11.22 | KLHDC5 | rs10842994 | C | T | 0.80 | 1.09 (1.04–1.13) |
15q26.1 | PRC1 | rs12899811 | G | A | 0.30 | 1.09 (1.04–1.13) |
2p16.1 | BCL11A | rs243088 | T | A | 0.46 | 1.09 (1.04–1.13) |
4q31.3 | TMEM154 | rs6813195 | C | T | 0.72 | 1.08 (1.06–1.10) |
15q24.3 | HMG20A | rs7178572 | G | A | 0.70 | 1.08 (1.04–1.13) |
11p15.1 | KCNJ11 | rs5215 | C | T | 0.38 | 1.08 (1.04–1.12) |
1q32.3 | PROX1 | rs2075423 | G | T | 0.66 | 1.08 (1.04–1.12) |
8q22.1 | TP53INP1 | rs7845219 | T | C | 0.53 | 1.08 (1.04–1.12) |
18q21.32 | MC4R | rs12970134 | A | G | 0.27 | 1.08 (1.03–1.12) |
2p25.3 | TMEM18 | rs10190052 | C | T | 0.88 | 1.07 (1.04–1.10) |
10q22.1 | C10orf35 | rs2812533 | C | T | 0.83 | 1.07 (1.04–1.09) |
3q27.3 | LPP | rs6808574 | C | T | 0.60 | 1.07 (1.04–1.09) |
6p21.33 | POU5F1, TCF19 | rs3132524 | G | A | 0.74 | 1.07 (1.04–1.09) |
9q21.32 | TLE1 | rs2796441 | G | A | 0.63 | 1.07 (1.03–1.12) |
20q13.12 | HNF4A | rs4812829 | A | G | 0.16 | 1.07 (1.01–1.12) |
5q11.2 | ARL15 | rs702634 | A | G | 0.71 | 1.06 (1.04–1.09) |
8q24.21 | TMEM75 | rs1561927 | C | T | 0.23 | 1.06 (1.04–1.09) |
12q24.31 | MPHOSPH9 | rs1727313 | C | T | 0.24 | 1.06 (1.04–1.08) |
13q12.13 | RNF6 | rs10507349 | G | A | 0.74 | 1.06 (1.04–1.08) |
6p21.1 | VEGFA | rs9472138 | T | C | 0.24 | 1.06 (1.04–1.08) |
6p24.3 | SSR1, RREB1 | rs9502570 | A | G | 0.30 | 1.06 (1.04–1.08) |
10q23.31 | PTEN | rs10788575 | A | G | 0.16 | 1.06 (1.03–1.08) |
15q22.2 | C2CD4A | rs7163757 | C | T | 0.56 | 1.06 (1.02–1.11) |
19q13.32 | GIPR | rs8108269 | G | T | 0.30 | 1.06 (1.02–1.11) |
10p13 | CDC123 | rs11257655 | T | C | 0.23 | 1.06 (1.01–1.11) |
7p14.3 | CRHR2 | rs2284219 | T | C | 0.32 | 1.05 (1.03–1.08) |
10q26.13 | PLEKHA1 | rs10510110 | C | T | 0.41 | 1.05 (1.03–1.07) |
1q41 | LYPLAL1 | rs2820446 | C | G | 0.71 | 1.05 (1.03–1.07) |
5q31.1 | PCBD2 | rs319598 | C | T | 0.53 | 1.05 (1.03–1.07) |
6q22.32 | C6orf173 | rs4273712 | G | A | 0.25 | 1.05 (1.03–1.07) |
7p21.2 | ETV1 | rs7795991 | G | A | 0.54 | 1.05 (1.03–1.07) |
9p24.2 | GLIS3 | rs7041847 | A | G | 0.50 | 1.05 (1.01–1.09) |
6q23.3 | IL20RA | rs6937795 | A | C | 0.42 | 1.04 (1.02–1.06) |
15q26.1 | AP3S2 | rs2028299 | C | A | 0.29 | 1.04 (1.00–1.09) |
2q24.3 | GRB14 | rs3923113 | A | C | 0.61 | 1.04 (1.00–1.09) |
3p14.1 | PSMD6 | rs831571 | C | T | 0.81 | 1.03 (0.99–1.08) |
3q27.3 | ST64GAL1 | rs16861329 | C | T | 0.85 | 1.03 (0.96–1.10) |
10q22.1 | VPS26A | rs1802295 | T | C | 0.33 | 1.02 (0.98–1.06) |
15q14 | RASGRP1 | rs7403531 | T | C | 0.22 | 1.02 (0.98–1.06) |
19q13.11 | PEPD | rs3786897 | A | G | 0.57 | 1.02 (0.98–1.06) |
3. Clinical Utility of Identified Genetic Variants
4. Utility of Genetic Variants in T2D Risk Prediction
5. Utility of Genetic Variants in Clinical Management
6. Future Directions and Conclusions
Conflicts of Interest
References
- Narayan, K.M.V.; Gregg, E.W.; Fagot-Campagna, A.; Engelgau, M.M.; Vinicor, F. Diabetes—A common, growing, serious, costly, and potentially preventable public health problem. Diabetes Res. Clin. Pract. 2000, 50, 77–84. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Lyssenko, V.; Jonsson, A.; Almgren, P.; Pulizzi, M.; Isomaa, B.; Tuomi, T.; Berglund, G.; Altshuler, D.; Nilsson, P.; Groop, L. Clinical risk factors, DNA variants and the development of Type 2 diabetes. N. Eng. J. Med. 2008, 359, 2220–2232. [Google Scholar] [CrossRef] [PubMed]
- Noble, D.; Mathur, R.; Dent, T.; Meads, C.; Greenhalgh, T. Risk models and scores for type 2 diabetes: Systematic review. BMJ 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abate, N.; Chandalia, M. Ethnicity and type 2 diabetes: Focus on Asian Indians. J. Diabetes Complicat. 2001, 15, 320–327. [Google Scholar] [CrossRef]
- Abate, N.; Chandalia, M. The impact of ethnicity on type 2 diabetes. J. Diabetes Complicat. 2003, 17, 39–58. [Google Scholar] [CrossRef]
- Neel, J.V. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 1962, 14, 353–362. [Google Scholar] [PubMed]
- Kaprio, J.; Tuomilehto, J.; Koskenvuo, M.; Romanov, K.; Reunanen, A.; Eriksson, J.; Stengård, J.; Kesäniemi, Y.A. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 1992, 35, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Committee on Diabetic Twins; Japan Diabetes Society. Diabetes mellitus in twins: A cooperative study in Japan. Diabetes Res. Clin. Pract. 1988, 5, 271–280. [Google Scholar]
- Poulsen, P.; Kyvik, K.O.; Vaag, A.; Beck-Nielsen, H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance—A population-based twin study. Diabetologia 1999, 42, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Almgren, P.; Lehtovirta, M.; Isomaa, B.; Sarelin, L.; Taskinen, M.R.; Lyssenko, V.; Tuomi, T.; Groop, L.; Botnia Study Group. xHeritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 2011, 54, 2811–2819. [Google Scholar] [CrossRef] [PubMed]
- Froguel, P.; Vaxillaire, M.; Sun, F.; Velho, G.; Zouali, H.; Butel, M.O.; Lesage, S.; Vionnet, N.; Clément, K.; Fougerousse, F.; et al. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature 1992, 356, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Shields, B.M.; Hicks, S.; Shepherd, M.H.; Colclough, K.; Hattersley, A.T.; Ellard, S. Maturity-onset diabetes of the young (MODY): How many cases are we missing? Diabetologia 2010, 53, 2504–2508. [Google Scholar] [CrossRef] [PubMed]
- Hetherington, M.M.; Cecil, J.E. Gene-environment interaction in obesity. Forum Nutr. 2010, 63, 195–203. [Google Scholar] [PubMed]
- Franks, P.W.; Pearson, E.; Florez, J.C. Gene-environment and gene-treatment interactions in type 2 diabetes: Progress, pitfalls, and prospects. Diabetes Care 2013, 36, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Alberti, G.; Zimmet, P.; Shaw, J.; Bloomgarden, Z.; Kaufman, F.; Silink, M.; Consensus Workshop Group. Type 2 diabetes in the young: The evolving epidemic: The international diabetes federation consensus workshop. Diabetes Care 2004, 27, 1798–1811. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.F.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz, J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A.; et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 2006, 38, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J.; Mohlke, K.L.; Bonnycastle, L.L.; Willer, C.J.; Li, Y.; Duren, W.L.; Erdos, M.R.; Stringham, H.M.; Chines, P.S.; Jackson, A.U.; et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007, 316, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Genetics Initiative of Broad Institute of Harvard and MIT; Lund University; Novartis Institutes of BioMedical Research; Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; de Bakker, P.I.; Chen, H.; Roix, J.J.; et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316, 1331–1336. [Google Scholar]
- Steinthorsdottir, V.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Jonsdottir, T.; Walters, G.B.; Styrkarsdottir, U.; Gretarsdottir, S.; Emilsson, V.; Ghosh, S.; et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 2007, 39, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 2007, 447, 661–678. [Google Scholar]
- Zeggini, E.; Scott, L.J.; Saxena, R.; Voight, B.F.; Marchini, J.L.; Hu, T.; de Bakker, P.I.; Abecasis, G.R.; Almgren, P.; Andersen, G.; et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 2008, 40, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, K.; Miyake, K.; Horikawa, Y.; Hara, K.; Osawa, H.; Furuta, H.; Hirota, Y.; Mori, H.; Jonsson, A.; Sato, Y.; et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 2008, 40, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Unoki, H.; Takahashi, A.; Kawaguchi, T.; Hara, K.; Horikoshi, M.; Andersen, G.; Ng, D.P.; Holmkvist, J.; Borch-Johnsen, K.; Jørgensen, T.; et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 2008, 40, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.J.; Yang, C.F.; Chen, C.C.; Chuang, L.M.; Lu, C.H.; Chang, C.T.; Wang, T.Y.; Chen, R.H.; Shiu, C.F.; Liu, Y.M.; et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet. 2010, 6, e1000847. [Google Scholar] [CrossRef] [PubMed]
- Voight, B.F.; Scott, L.J.; Steinthorsdottir, V.; Morris, A.P.; Dina, C.; Welch, R.P.; Zeggini, E.; Huth, C.; Aulchenko, Y.S.; Thorleifsson, G.; et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 2010, 42, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.O.; Long, J.; Cai, Q.; Qi, L.; Xiang, Y.B.; Cho, Y.S.; Tai, E.S.; Li, X.; Lin, X.; Chow, W.H.; et al. Identification of new genetic risk variants for type 2 diabetes. PLoS Genet. 2010, 6, e1001127. [Google Scholar] [CrossRef] [PubMed]
- Kooner, J.S.; Saleheen, D.; Sim, X.; Sehmi, J.; Zhang, W.; Frossard, P.; Been, L.F.; Chia, K.S.; Dimas, A.S.; Hassanali, N.; et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 2011, 43, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.S.; Chen, C.H.; Hu, C.; Long, J.; Ong, R.T.; Sim, X.; Takeuchi, F.; Wu, Y.; Go, M.J.; Yamauchi, T.; et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 2011, 44, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.P.; Voight, B.F.; Teslovich, T.M.; Ferreira, T.; Segrè, A.V.; Steinthorsdottir, V.; Strawbridge, R.J.; Khan, H.; Grallert, H.; Mahajan, A.; et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 2012, 44, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, A.; Go, M.J.; Zhang, W.; Below, J.E.; Gaulton, K.J.; Ferreira, T.; Horikoshi, M.; Johnson, A.D.; Ng, M.C.; Prokopenko, I.; et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 2014, 46, 234–244. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.I.; Zeggini, E. Genome-wide association studies in type 2 diabetes. Curr. Diabetes Rep. 2009, 9, 164–171. [Google Scholar] [CrossRef]
- Qi, Q.; Hu, F.B. Genetics of type 2 diabetes in European populations. J. Diabetes 2012, 4, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Bonnefond, A.; Froguel, P. Rare and common genetic events in type 2 diabetes: what should biologists know? Cell Metab. 2015, 21, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.; Chune, G.W.; Raghavan, V.A. Legacy effects from DCCT and UKPDS: What they mean and implications for future diabetes trials. Curr. Atheroscler. Rep. 2010, 12, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, E.; Dicembrini, I.; Lauria, A.; Pozzilli, P. Is glucose control important for prevention of cardiovascular disease in diabetes? Diabetes Care 2013, 36, S259–S263. [Google Scholar] [CrossRef] [PubMed]
- Florez, J.C.; Jablonski, K.A.; Bayley, N.; Pollin, T.I.; de Bakker, P.I.; Shuldiner, A.R.; Knowler, W.C.; Nathan, D.M.; Altshuler, D. Diabetes Prevention Program Research Group. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N. Engl. J. Med. 2006, 355, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Lango, H.; UK Type 2 Diabetes Genetics Consortium; Palmer, C.N.; Morris, A.D.; Zeggini, E.; Hattersley, A.T.; McCarthy, M.I.; Frayling, T.M.; Weedon, M.N. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 2008, 57, 3129–3135. [Google Scholar] [CrossRef] [PubMed]
- Lin, X; Song, K.; Lim, N.; Yuan, X.; Johnson, T.; Abderrahmani, A.; Vollenweider, P.; Stirnadel, H.; Sundseth, S.S.; Lai, E.; et al. Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score—The CoLaus Study. Diabetologia 2009, 52, 600–608. [Google Scholar]
- Sparsø, T.; Grarup, N.; Andreasen, C.; Albrechtsen, A.; Holmkvist, J.; Andersen, G.; Jørgensen, T.; Borch-Johnsen, K.; Sandbaek, A.; Lauritzen, T.; et al. Combined analysis of 19 common validated type 2 diabetes susceptibility gene variants shows moderate discriminative value and no evidence of gene-gene interaction. Diabetologia 2009, 52, 1308–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Stancáková, A.; Kuusisto, J.; Laakso, M. Identification of undiagnosed type 2 diabetic individuals by the finish diabetes risk score and biochemical and genetic markers: A population-based study of 7232 Finnish men. J. Clin. Endocrinol. Metab. 2010, 95, 3858–3862. [Google Scholar] [CrossRef] [PubMed]
- Talmud, P.J.; Hingorani, A.D.; Cooper, J.A.; Marmot, M.G.; Brunner, E.J.; Kumari, M.; Kivimäki, M.; Humphries, S.E. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 2010. [Google Scholar] [CrossRef] [PubMed]
- De Miguel-Yanes, J.M.; Shrader, P.; Pencina, M.J.; Fox, C.S.; Manning, A.K.; Grant, R.W.; Dupuis, J.; Florez, J.C.; D’Agostino, R.B., Sr.; Cupples, L.A.; et al. Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 2011, 34, 121–125. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2012, 35, S64–S71. [Google Scholar]
- Stone, M.A.; Camosso-Stefinovic, J.; Wilkinson, J.; de Lusignan, S.; Hattersley, A.T.; Khunti, K. Incorrect and incomplete coding and classification of diabetes: A systematic review. Diabet. Med. 2010, 27, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Merger, S.R.; Leslie, R.D.; Boehm, B.O. The broad clinical phenotype of Type 1 diabetes at presentation. Diabet. Med. 2013, 30, 170–178. [Google Scholar] [CrossRef] [PubMed]
- The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar]
- UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998, 352, 854–865. [Google Scholar]
- Ohkubo, Y.; Kishikawa, H.; Araki, E.; Miyata, T.; Isami, S.; Motoyoshi, S.; Kojima, Y.; Furuyoshi, N.; Shichiri, M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: A randomized prospective 6-year study. Diabetes Res. Clin. Pract. 1995, 28, 103–117. [Google Scholar] [CrossRef]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.M.; Cleary, P.A.; Backlund, J.Y.; Genuth, S.M.; Lachin, J.M.; Orchard, T.J.; Raskin, P.; Zinman, B.; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 2005, 353, 2643–2653. [Google Scholar] [PubMed]
- Action to Control Cardiovascular Risk in Diabetes Study Group; Gerstein, H.C.; Miller, M.E.; Byington, R.P.; Goff, D.C., Jr.; Bigger, J.T.; Buse, J.B.; Cushman, W.C.; Genuth, S.; Ismail-Beigi, F.; et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008, 358, 2545–2559. [Google Scholar]
- ADVANCE Collaborative Group; Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2009, 360, 129–139. [Google Scholar]
- Duckworth, W.; Abraira, C.; Moritz, T.; Reda, D.; Emanuele, N.; Reaven, P.D.; Zieve, F.J.; Marks, J.; Davis, S.N.; Hayward, R.; et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 2009, 360, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Seshasai, S.R.; Wijesuriya, S.; Sivakumaran, R.; Nethercott, S.; Preiss, D.; Erqou, S.; Sattar, N. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: A meta-analysis of randomised controlled trials. Lancet 2009, 373, 1765–1772. [Google Scholar] [CrossRef]
- Bailey, C.J.; Aschner, P.; del Prato, S.; LaSalle, J.; Ji, L.; Matthaei, S.; Global Partnership for Effective Diabetes Management. Individualized glycaemic targets and pharmacotherapy in type 2 diabetes. Diabetes Vasc. Dis. Res. 2013, 10, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Pozzilli, P.; Strollo, R.; Bonora, E. One size does not fit all glycemic targets for type 2 diabetes. J. Diabetes Investig. 2014, 5, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.A.; Haggar, M.A. Achieving glycaemic targets with basal insulin in T2DM by individualizing treatment. Nat. Rev. Endocrinol. 2014, 10, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Pearson, E.R.; Donnelly, L.A.; Kimber, C.; Whitley, A.; Doney, A.S.; McCarthy, M.I.; Hattersley, A.T.; Morris, A.D.; Palmer, C.N. Variation in TCF7L2 influences therapeutic response to sulfonylureas: A GoDARTs study. Diabetes 2007, 56, 2178–2182. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.L.; Visser, L.E.; van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: A preliminary study. Diabetes 2009, 58, 745–749. [Google Scholar] [CrossRef] [PubMed]
- GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group; Wellcome Trust Case Control Consortium; Zhou, K.; Bellenguez, C.; Spencer, C.C.; Bennett, A.J.; Coleman, R.L.; Tavendale, R.; Hawley, S.A.; Donnelly, L.A.; et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat. Genet. 2011, 43, 117–120. [Google Scholar]
- Tang, Y.; Axelsson, A.S.; Spegel, P.; Andersson, L.E.; Mulder, H.; Groop, L.C.; Renstrom, E.; Rosengren, A.H. Genotype-based treatment of type 2 diabetes with an alpha2a-adrenergic receptor antagonist. Sci. Transl. Med. 2014. [Google Scholar] [CrossRef]
- Zimdahl, H.; Ittrich, C.; Graefe-Mody, U.; Boehm, B.O.; Mark, M.; Woerle, H.J.; Dugi, K.A. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin. Diabetologia 2014, 57, 1869–1875. [Google Scholar] [CrossRef] [PubMed]
- Ellard, S.; Bellanné-Chantelot, C.; Hattersley, A.T.; European Molecular Genetics Quality Network (EMQN) MODY group. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008, 51, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Pearson, E.R.; Starkey, B.J.; Powell, R.J.; Gribble, F.M.; Clark, P.M.; Hattersley, A.T. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003, 362, 1275–1281. [Google Scholar] [CrossRef]
- Fajans, S.S.; Bell, G.I. MODY: History, genetics, pathophysiology, and clinical decision making. Diabetes Care 2011, 34, 1878–1884. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Groop, L. Epigenetics: A molecular link between environmental factors and type 2 diabetes. Diabetes 2009, 58, 2718–2725. [Google Scholar] [CrossRef] [PubMed]
- Voy, B.H. Systems genetics: A powerful approach for gene-environment interactions. J. Nutr. 2011, 141, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Metabolic profiling of diabetes: From black-box epidemiology to systems epidemiology. Clin. Chem. 2011, 57, 1224–1226. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Mias, G.I.; Li-Pook-Than, J.; Jiang, L.; Lam, H.Y.; Chen, R.; Miriami, E.; Karczewski, K.J.; Hariharan, M.; Dewey, F.E.; et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012, 148, 1293–1307. [Google Scholar] [CrossRef] [PubMed]
- Angueira, A.R.; Ludvik, A.E.; Reddy, T.E.; Wicksteed, B.; Lowe, W.L., Jr.; Layden, B.T. New insights into gestational glucose metabolism: Lessons learned from 21st century approaches. Diabetes 2015, 64, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.C.; Bueno, A.A.; de Souza, R.G.; Mota, J.F. Gut microbiota, probiotics and diabetes. Nutr. J. 2014, 17, 13–60. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorajoo, R.; Liu, J.; Boehm, B.O. Genetics of Type 2 Diabetes and Clinical Utility. Genes 2015, 6, 372-384. https://doi.org/10.3390/genes6020372
Dorajoo R, Liu J, Boehm BO. Genetics of Type 2 Diabetes and Clinical Utility. Genes. 2015; 6(2):372-384. https://doi.org/10.3390/genes6020372
Chicago/Turabian StyleDorajoo, Rajkumar, Jianjun Liu, and Bernhard O. Boehm. 2015. "Genetics of Type 2 Diabetes and Clinical Utility" Genes 6, no. 2: 372-384. https://doi.org/10.3390/genes6020372
APA StyleDorajoo, R., Liu, J., & Boehm, B. O. (2015). Genetics of Type 2 Diabetes and Clinical Utility. Genes, 6(2), 372-384. https://doi.org/10.3390/genes6020372