Allelic Variations in Vernalization (Vrn) Genes in Triticum spp.
Abstract
1. Introduction
2. Characteristics and Functions of Vrn Genes
3. Allelic Variations within Vrn Genes at Different Ploidy Levels
3.1. Allelic Variation of Vrn-1 at the Promoter Level
3.2. Allelic Variation of Vrn-1 at Gene Body Level
3.3. Copy Number Variations of Vrn-1
3.4. Allelic Variation of Vrn-1 at Different Ploidy Levels
3.5. Allelic Variation of Vrn-2, Vrn3, and Vrn4 Genes
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsuoka, Y. Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and Allopolyploid Speciation in Their Diversification. Plant Cell Physiol. 2011, 52, 750–764. [Google Scholar] [CrossRef]
- Mourad, A.M.I.; Alomari, D.Z.; Alqudah, A.M.; Sallam, A.; Salem, K.F.M. Recent Advances in Wheat (Triticum spp.) Breeding. In Advances in Plant Breeding Strategies: Cereals; Springer: Cham, Switzerland, 2019; Volume 5, pp. 559–593. ISBN 978-3-030-23108-8. [Google Scholar]
- Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The Polyploidy and Its Key Role in Plant Breeding. Planta 2016, 243, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Van De Peer, Y.; Mizrachi, E.; Marchal, K. The Evolutionary Significance of Polyploidy. Nat. Rev. Genet. 2017, 18, 411–424. [Google Scholar] [CrossRef]
- Van de Peer, Y.; Ashman, T.L.; Soltis, P.S.; Soltis, D.E. Polyploidy: An Evolutionary and Ecological Force in Stressful Times. Plant Cell 2021, 33, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Alix, K.; Gérard, P.R.; Schwarzacher, T.; Heslop-Harrison, J.S.P. Polyploidy and Interspecific Hybridization: Partners for Adaptation, Speciation and Evolution in Plants. Ann. Bot. 2017, 120, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Dubcovsky, J.; Dvorak, J. Genome Plasticity a Key Factor in the Success of Polyploid Wheat under Domestication. Science 2007, 316, 1862–1866. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Morrell, P.L. Polyploidy Boosts Domestication. Nat. Plants 2016, 2, 16116. [Google Scholar] [CrossRef]
- Taranto, F.; Esposito, S.; Fania, F.; Sica, R.; Marzario, S.; Logozzo, G.; Gioia, T.; De Vita, P. Breeding Effects on Durum Wheat Traits Detected Using GWAS and Haplotype Block Analysis. Front. Plant Sci. 2023, 14, 1206517. [Google Scholar] [CrossRef]
- Kilian, B.; Özkan, H.; Pozzi, C.; Salamini, F. Domestication of the Triticeae in the Fertile Crescent BT—Genetics and Genomics of the Triticeae; Muehlbauer, G.J., Feuillet, C., Eds.; Springer: New York, NY, USA, 2009; pp. 81–119. ISBN 978-0-387-77489-3. [Google Scholar]
- Yang, C.; Zhao, L.; Zhang, H.; Yang, Z.; Wang, H.; Wen, S.; Zhang, C.; Rustgi, S.; Von Wettstein, D.; Liu, B. Evolution of Physiological Responses to Salt Stress in Hexaploid Wheat. Proc. Natl. Acad. Sci. USA 2014, 111, 11882–11887. [Google Scholar] [CrossRef]
- Fowler, D.B.; Dvorak, J.; Gusta, L. V Comparative Cold Hardiness of Several Triticum Species and Secale cereale L. Crop Sci. 1977, 17, 941–943. [Google Scholar] [CrossRef]
- Limin, A.E.; Fowler, D.B. Cold Hardiness of Some Relatives of Hexaploid Wheat. Can. J. Bot. 1981, 59, 572–573. [Google Scholar] [CrossRef]
- Peng, J.; Sun, D.; Nevo, E. Wild Emmer Wheat, “Triticum dicoccoides”, Occupies a Pivotal Position in Wheat Domestication Process. Aust. J. Crop Sci. 2011, 5, 1127–1143. [Google Scholar]
- Taranto, F.; Esposito, S.; De Vita, P. Genomics for Yield and Yield Components in Durum Wheat. Plants 2023, 12, 2571. [Google Scholar] [CrossRef]
- Distelfeld, A.; Li, C.; Dubcovsky, J. Regulation of Flowering in Temperate Cereals. Curr. Opin. Plant Biol. 2009, 12, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Scarth, R.; Law, C.N. The Location of the Photoperiod Gene, Ppd2 and an Additional Genetic Factor for Ear-Emergence Time on Chromosome 2B of Wheat. Heredity 1983, 51, 607–619. [Google Scholar] [CrossRef]
- Law, C.N.; Worland, A.J. Genetic Analysis of Some Flowering Time and Adaptive Traits in Wheat. New Phytol. 1997, 137, 19–28. [Google Scholar] [CrossRef]
- Yan, L.; Loukoianov, A.; Tranquilli, G.; Helguera, M.; Fahima, T.; Dubcovsky, J. Positional Cloning of the Wheat Vernalization Gene VRN1. Proc. Natl. Acad. Sci. USA 2003, 100, 6263–6268. [Google Scholar] [CrossRef]
- Dubcovsky, J.; Loukoianov, A.; Fu, D.; Valarik, M.; Sanchez, A.; Yan, L. Effect of Photoperiod on the Regulation of Wheat Vernalization Genes VRN1 and VRN2. Plant Mol. Biol. 2006, 60, 469–480. [Google Scholar] [CrossRef]
- Stelmakh, A.F. Growth Habit in Common Wheat (Triticum aestivum L. Em. Thell.). Euphytica 1987, 36, 513–519. [Google Scholar] [CrossRef]
- Chu, C.G.; Tan, C.T.; Yu, G.T.; Zhong, S.; Xu, S.S.; Yan, L. A Novel Retrotransposon Inserted in the Dominant Vrn-B1 Allele Confers Spring Growth Habit in Tetraploid Wheat (Triticum turgidum L.). G3 Genes Genomes Genet. 2011, 1, 637–645. [Google Scholar] [CrossRef]
- Chhuneja, P.; Arora, J.K.; Kaur, P.; Kaur, S.; Singh, K. Characterization of Wild Emmer Wheat Triticum dicoccoides Germplasm for Vernalization Alleles. J. Plant Biochem. Biotechnol. 2015, 24, 249–253. [Google Scholar] [CrossRef]
- Boden, S.A.; McIntosh, R.A.; Uauy, C.; Krattinger, S.G.; Dubcovsky, J.; Rogers, W.J.; Xia, X.C.; Badaeva, E.D.; Bentley, A.R.; Brown-Guedira, G.; et al. Updated Guidelines for Gene Nomenclature in Wheat. Theor. Appl. Genet. 2023, 136, 72. [Google Scholar] [CrossRef]
- Yan, L.; Loukoianov, A.; Blechl, A.; Tranquilli, G.; Ramakrishna, W.; SanMiguel, P.; Bennetzen, J.L.; Echenique, V.; Dubcovsky, J. The Wheat VRN2 Gene Is a Flowering Repressor Down-Regulated by Vernalization. Science 2004, 303, 1640–1644. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Fu, D.; Li, C.; Blechl, A.; Tranquilli, G.; Bonafede, M.; Sanchez, A.; Valarik, M.; Yasuda, S.; Dubcovsky, J. The Wheat and Barley Vernalization Gene VRN3 Is an Orthologue of FT. Proc. Natl. Acad. Sci. USA 2006, 103, 19581–19586. [Google Scholar] [CrossRef]
- Kippes, N.; Debernardi, J.M.; Vasquez-Gross, H.A.; Akpinar, B.A.; Budak, H.; Kato, K.; Chao, S.; Akhunov, E.; Dubcovsky, J. Identification of the VERNALIZATION 4 Gene Reveals the Origin of Spring Growth Habit in Ancient Wheats from South Asia. Proc. Natl. Acad. Sci. USA 2015, 112, E5401–E5410. [Google Scholar] [CrossRef] [PubMed]
- Mandel, M.A.; Gustafson-brown, C.; Savidge, B.; Yanofsky, M.F. Molecular Characterization of the Arabidopsis Floral Homeotic Gene APETALA1. Nature 1992, 360, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Danyluk, J.; Kane, N.A.; Breton, G.; Limin, A.E.; Fowler, D.B.; Sarhan, F. TaVRT-1, a Putative Transcription Factor Associated with Vegetative to Reproductive Transition in Cereals. Plant Physiol. 2003, 132, 1849–1860. [Google Scholar] [CrossRef]
- Murai, K.; Miyamae, M.; Kato, H.; Takumi, S.; Ogihara, Y. WAP1, a Wheat APETALA1 Homolog, Plays a Central Role in the Phase Transition from Vegetative to Reproductive Growth. Plant Cell Physiol. 2003, 44, 1255–1265. [Google Scholar] [CrossRef]
- Trevaskis, B.; Bagnall, D.J.; Ellis, M.H.; Peacock, W.J.; Dennis, E.S. MADS Box Genes Control Vernalization-Induced Flowering in Cereals. Proc. Natl. Acad. Sci. USA 2003, 100, 13099–13104. [Google Scholar] [CrossRef]
- Pugsley, A.T. A Genetic Analysis of the Spring-Winter Habit of Growth in Wheat. Aust. J. Agric. Res. 1971, 22, 21–31. [Google Scholar] [CrossRef]
- Law, C.N.; Worland, A.J.; Giorgi, B. The Genetic Control of Ear-Emergence Time by Chromosomes 5A and 5D of Wheat. Heredity 1976, 36, 49–58. [Google Scholar] [CrossRef]
- Worland, A.J. The Influence of Flowering Time Genes on Environmental Adaptability in European Wheats. Euphytica 1996, 89, 49–57. [Google Scholar] [CrossRef]
- Barrett, B.; Bayram, M.; Kidwell, K. Identifying AFLP and Microsatellite Markers for Vernalization Response Gene Vrn-B1 in Hexaploid Wheat Using Reciprocal Mapping Populations. Plant Breed. 2002, 121, 400–406. [Google Scholar] [CrossRef]
- Yan, L.; Helguera, M.; Kato, K.; Fukuyama, S.; Sherman, J.; Dubcovsky, J. Allelic Variation at the VRN-1 Promoter Region in Polyploid Wheat. Theor. Appl. Genet. 2004, 109, 1677–1686. [Google Scholar] [CrossRef]
- Fu, D.; Szűcs, P.; Yan, L.; Helguera, M.; Skinner, J.S.; Von Zitzewitz, J.; Hayes, P.M.; Dubcovsky, J. Large Deletions within the First Intron in VRN-1 Are Associated with Spring Growth Habit in Barley and Wheat. Mol. Genet. Genom. 2005, 273, 54–65. [Google Scholar] [CrossRef]
- Trevaskis, B.; Hemming, M.N.; Dennis, E.S.; Peacock, W.J. The Molecular Basis of Vernalization-Induced Flowering in Cereals. Trends Plant Sci. 2007, 12, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.T.; Yan, L. Duplicated, Deleted and Translocated VRN2 Genes in Hexaploid Wheat. Euphytica 2016, 208, 277–284. [Google Scholar] [CrossRef]
- Kippes, N.; Chen, A.; Zhang, X.; Lukaszewski, A.J.; Dubcovsky, J. Development and Characterization of a Spring Hexaploid Wheat Line with No Functional VRN2 Genes. Theor. Appl. Genet. 2016, 129, 1417–1428. [Google Scholar] [CrossRef]
- Faure, S.; Higgins, J.; Turner, A.; Laurie, D.A. The FLOWERING LOCUS T-like Gene Family in Barley (Hordeum vulgare). Genetics 2007, 176, 599–609. [Google Scholar] [CrossRef]
- Li, C.; Dubcovsky, J. Wheat FT Protein Regulates VRN1 Transcription through Interactions with FDL2. Plant J. 2008, 55, 543–554. [Google Scholar] [CrossRef]
- Bonnin, I.; Rousset, M.; Madur, D.; Sourdille, P.; Dupuits, C.; Brunel, D.; Goldringer, I. FT Genome A and D Polymorphisms Are Associated with the Variation of Earliness Components in Hexaploid Wheat. Theor. Appl. Genet. 2008, 116, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Nishida, H.; Zhu, J.; Nitcher, R.; Distelfeld, A.; Akashi, Y.; Kato, K.; Dubcovsky, J. Vrn-D4 Is a Vernalization Gene Located on the Centromeric Region of Chromosome 5D in Hexaploid Wheat. Theor. Appl. Genet. 2010, 120, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Le Gouis, J.; Bordes, J.; Ravel, C.; Heumez, E.; Faure, S.; Praud, S.; Galic, N.; Remoué, C.; Balfourier, F.; Allard, V.; et al. Genome-Wide Association Analysis to Identify Chromosomal Regions Determining Components of Earliness in Wheat. Theor. Appl. Genet. 2012, 124, 597–611. [Google Scholar] [CrossRef]
- Wen, M.; Su, J.; Jiao, C.; Zhang, X.; Xu, T.; Wang, T.; Liu, X.; Wang, Z.; Sun, L.; Yuan, C.; et al. Pleiotropic Effect of the Compactum Gene and Its Combined Effects with Other Loci for Spike and Grain-Related Traits in Wheat. Plants 2022, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, S.; Matsuo, S.; Wong, H.L.; Yokoi, S.; Shimamoto, K. Hd3a Protein Is a Mobile Flowering Signal in Rice. Science 2007, 316, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Kardailsky, I.; Shukla, V.K.; Ahn, J.H.; Dagenais, N.; Christensen, S.K.; Nguyen, J.T.; Chory, J.; Harrison, M.J.; Weigel, D. Activation Tagging of the Floral Inducer FT. Science 1999, 286, 1962–1965. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kaya, H.; Goto, K.; Iwabuchi, M.; Araki, T. A Pair of Related Genes with Antagonistic Roles in Mediating Flowering Signals. Science 1999, 286, 1960–1962. [Google Scholar] [CrossRef]
- Yeung, K.; Seitz, T.; Li, S.; Janosch, P.; McFerran, B.; Kaiser, C.; Fee, F.; Katsanakis, K.D.; Rose, D.W.; Mischak, H.; et al. Suppression of Raf-1 Kinase Activity and MAP Kinase Signalling by RKIP. Nature 1999, 401, 173–177. [Google Scholar] [CrossRef]
- Kroslak, T.; Koch, T.; Kahl, E.; Höllt, V. Human Phosphatidylethanolamine-Binding Protein Facilitates Heterotrimeric G Protein-Dependent Signaling. J. Biol. Chem. 2001, 276, 39772–39778. [Google Scholar] [CrossRef]
- Corbesier, L.; Vincent, C.; Jang, S.; Fornara, F.; Fan, Q.; Searle, I.; Giakountis, A.; Farrona, S.; Gissot, L.; Turnbull, C.; et al. FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science 2007, 316, 1030–1033. [Google Scholar] [CrossRef]
- Turner, A.; Beales, J.; Faure, S.; Dunford, R.P.; Laurie, D.A. Botany: The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley. Science 2005, 310, 1031–1034. [Google Scholar] [CrossRef] [PubMed]
- Kamran, A.; Iqbal, M.; Spaner, D. Flowering Time in Wheat (Triticum aestivum L.): A Key Factor for Global Adaptability. Euphytica 2014, 197, 1–26. [Google Scholar] [CrossRef]
- Fu, D.; Dunbar, M.; Dubcovsky, J. Wheat VIN3-like PHD Finger Genes Are up-Regulated by Vernalization. Mol. Genet. Genom. 2007, 277, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhao, L.; Zhang, X.; Lv, G.; Pan, Y.; Chen, F. Gene Regulatory Network and Abundant Genetic Variation Play Critical Roles in Heading Stage of Polyploidy Wheat. BMC Plant Biol. 2019, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, K.; Nakagawa, K.; Kuno, H.; Kato, K. Ecogeographical Differentiation in East Asian Wheat, Revealed from the Geographical Variation of Growth Habit and Vrn Genotype. Euphytica 2000, 111, 137–143. [Google Scholar] [CrossRef]
- Iwaki; Haruna; Niwa; Kato Adaptation and Ecological Differentiation in Wheat with Special Reference to Geographical Variation of Growth Habit and Vrn Genotype. Plant Breed. 2001, 120, 107–114. [CrossRef]
- Knott, D.R. The Inheritance of Rust Resistance.: Iv. Monosomic Analysis of Rust Resistance and Some Other Characters in Six Varieties of Wheat Including Gabo and Kenya Farmer. Can. J. Plant Sci. 1959, 39, 215–228. [Google Scholar] [CrossRef]
- O’Brien, L.; Morell, M.; Wrigley, C.; Appels, R. Genetic Pool of Australian Wheats. In The World Wheat Book; Bonjean, A.P., Angus, W.J., Eds.; Lavoisier Publishing: Paris, France, 2001; pp. 611–648. [Google Scholar]
- Sung, S.; Schmitz, R.J.; Amasino, R.M. A PHD Finger Protein Involved in Both the Vernalization and Photoperiod Pathways in Arabidopsis. Genes Dev. 2006, 20, 3244–3248. [Google Scholar] [CrossRef]
- Muterko, A.; Kalendar, R.; Salina, E. Allelic Variation at the VERNALIZATION-A1, VRN-B1, VRN-B3, and PHOTOPERIOD-A1 Genes in Cultivars of Triticum durum Desf. Planta 2016, 244, 1253–1263. [Google Scholar] [CrossRef]
- Strejčková, B.; Milec, Z.; Holušová, K.; Cápal, P.; Vojtková, T.; Čegan, R.; Šafář, J. In-depth Sequence Analysis of Bread Wheat Vrn1 Genes. Int. J. Mol. Sci. 2021, 22, 12284. [Google Scholar] [CrossRef]
- Konopatskaia, I.; Vavilova, V.; Kondratenko, E.Y.; Blinov, A.; Goncharov, N.P. VRN1 Genes Variability in Tetraploid Wheat Species with a Spring Growth Habit. BMC Plant Biol. 2016, 16, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Zikhali, M.; Turner, A.S.; Isaac, P.; Laurie, D.A. Copy Number Variation Affecting the Photoperiod-B1 and Vernalization-A1 Genes Is Associated with Altered Flowering Time in Wheat (Triticum aestivum). PLoS ONE 2012, 7, e33234. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, A.A.; Salina, E.A. Genetic Regulation of Common Wheat Heading Time. Russ. J. Genet. 2018, 54, 375–388. [Google Scholar] [CrossRef]
- Pidal, B.; Yan, L.; Fu, D.; Zhang, F.; Tranquilli, G.; Dubcovsky, J. The CArG-Box Located Upstream from the Transcriptional Start of Wheat Vernalization Gene VRN1 Is Not Necessary for the Vernalization Response. J. Hered. 2009, 100, 355–364. [Google Scholar] [CrossRef]
- Royo, C.; Dreisigacker, S.; Ammar, K.; Villegas, D. Agronomic Performance of Durum Wheat Landraces and Modern Cultivars and Its Association with Genotypic Variation in Vernalization Response (Vrn-1) and Photoperiod Sensitivity (Ppd-1) Genes. Eur. J. Agron. 2020, 120, 126129. [Google Scholar] [CrossRef]
- Muterko, A.; Kalendar, R.; Salina, E. Novel Alleles of the VERNALIZATION1 Genes in Wheat Are Associated with Modulation of DNA Curvature and Flexibility in the Promoter Region. BMC Plant Biol. 2016, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Tranquilli, G.; Dubcovsky, J. Epistatic Interaction between Vernalization Genes Vrn-Am1 and Vrn-Am2 in Diploid Wheat. J. Hered. 2000, 91, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Golovnina, K.A.; Kondratenko, E.Y.; Blinov, A.G.; Goncharov, N.P. Molecular Characterization of Vernalization Loci VRN1 in Wild and Cultivated Wheats. BMC Plant Biol. 2010, 10, 168. [Google Scholar] [CrossRef]
- Ivaničová, Z.; Jakobson, I.; Reis, D.; Šafář, J.; Milec, Z.; Abrouk, M.; Doležel, J.; Järve, K.; Valárik, M. Characterization of New Allele Influencing Flowering Time in Bread Wheat Introgressed from Triticum militinae. New Biotechnol. 2016, 33, 718–727. [Google Scholar] [CrossRef]
- Muterko, A.F.; Salina, E.A. Analysis of the VERNALIZATION-A1 Exon-4 Polymorphism in Polyploid Wheat. Vavilovskii Zhurnal Genet. I Sel. 2017, 21, 323–333. [Google Scholar] [CrossRef]
- Muterko, A.; Salina, E. Origin and Distribution of the VRN-A1 Exon 4 and Exon 7 Haplotypes in Domesticated Wheat Species. Agronomy 2018, 8, 156. [Google Scholar] [CrossRef]
- Miroshnichenko, D.; Timerbaev, V.; Klementyeva, A.; Pushin, A.; Sidorova, T.; Litvinov, D.; Nazarova, L.; Shulga, O.; Divashuk, M.; Karlov, G.; et al. CRISPR/Cas9-Induced Modification of the Conservative Promoter Region of VRN-A1 Alters the Heading Time of Hexaploid Bread Wheat. Front. Plant Sci. 2022, 13, 1048695. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, Y.; Fan, Q.; Li, R.; Chen, D.; Zhang, X. Characterization and Distribution of Novel Alleles of the Vernalization Gene Vrn-A1 in Chinese Wheat (Triticum aestivum L.) Cultivars. Crop J. 2022, 11, 852–862. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, M.; Wang, S.; Chen, F.; Cui, D. Allelic Variation at the Vernalization and Photoperiod Sensitivity Loci in Chinese Winter Wheat Cultivars (Triticum aestivum L.). Front. Plant Sci. 2015, 6, 470. [Google Scholar] [CrossRef]
- Chepurnov, G.Y.; Ovchinnikova, E.S.; Blinov, A.G.; Chikida, N.N.; Belousova, M.K.; Goncharov, N.P. Analysis of the Structural Organization and Expression of the Vrn-D1 Gene Controlling Growth Habit (Spring vs. Winter) in Aegilops taushii Coss. Plants 2023, 12, 3596. [Google Scholar] [CrossRef] [PubMed]
- Shcherban, A.B.; Schichkina, A.A.; Salina, E.A. The Occurrence of Spring Forms in Tetraploid Timopheevi Wheat Is Associated with Variation in the First Intron of the VRN-A1 Gene. BMC Plant Biol. 2016, 16, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Shcherban, A.B.; Strygina, K.V.; Salina, E.A. VRN-1 Gene- Associated Prerequisites of Spring Growth Habit in Wild Tetraploid Wheat T. dicoccoides and the Diploid A Genome Species. BMC Plant Biol. 2015, 15, 94. [Google Scholar] [CrossRef]
- Sehgal, D.; Vikram, P.; Sansaloni, C.P.; Ortiz, C.; Pierre, C.S.; Payne, T.; Ellis, M.; Amri, A.; Petroli, C.D.; Wenzl, P.; et al. Exploring and Mobilizing the Gene Bank Biodiversity for Wheat Improvement. PLoS ONE 2015, 10, e0132112. [Google Scholar] [CrossRef]
- Steinfort, U.; Trevaskis, B.; Fukai, S.; Bell, K.L.; Dreccer, M.F. Vernalisation and Photoperiod Sensitivity in Wheat: Impact on Canopy Development and Yield Components. Field Crops Res. 2017, 201, 108–121. [Google Scholar] [CrossRef]
- Sherman, J.D.; Yan, L.; Talbert, L.; Dubcovsky, J. A PCR Marker for Growth Habit in Common Wheat Based on Allelic Variation at the VRN-A1 Gene. Crop Sci. 2004, 44, 1832–1838. [Google Scholar] [CrossRef]
- Chen, F.; Gao, M.; Zhang, J.; Zuo, A.; Shang, X.; Cui, D. Molecular Characterization of Vernalization and Response Genes in Bread Wheat from the Yellow and Huai Valley of China. BMC Plant Biol. 2013, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Shcherban, A.B.; Salina, E.A. Evolution of VRN-1 Homoeologous Loci in Allopolyploids of Triticum and Their Diploid Precursors. BMC Plant Biol. 2017, 17, 188. [Google Scholar] [CrossRef] [PubMed]
- Santra, D.K.; Santra, M.; Allan, R.E.; Campbell, K.G.; Kidwell, K.K. Genetic and Molecular Characterization of Vernalization Genes Vrn-A1, Vrn-B1, and Vrn-D1 in Spring Wheat Germplasm from the Pacific Northwest Region of the U.S.A. Plant Breed. 2009, 128, 576–584. [Google Scholar] [CrossRef]
- Milec, Z.; Tomková, L.; Sumíková, T.; Pánková, K. A New Multiplex PCR Test for the Determination of Vrn-B1 Alleles in Bread Wheat (Triticum aestivum L.). Mol. Breed. 2012, 30, 317–323. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Wang, X.; Ma, L.; Wang, Z.; Zhang, X. Molecular Characterization of a Novel Vernalization Allele Vrn-B1d and Its Effect on Heading Time in Chinese Wheat (Triticum aestivum L.) Landrace Hongchunmai. Mol. Breed. 2018, 38, 127. [Google Scholar] [CrossRef]
- Strejčková, B.; Mazzucotelli, E.; Čegan, R.; Milec, Z.; Brus, J.; Çakır, E.; Mastrangelo, A.M.; Özkan, H.; Šafář, J. Wild Emmer Wheat, the Progenitor of Modern Bread Wheat, Exhibits Great Diversity in the VERNALIZATION1 Gene. Front. Plant Sci. 2023, 13, 1106164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Wu, S.; Yang, J.; Liu, H.; Zhou, Y. A Single Nucleotide Polymorphism at the Vrn-D1 Promoter Region in Common Wheat Is Associated with Vernalization Response. Theor. Appl. Genet. 2012, 125, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Pearce, S.; Burke, A.; See, D.R.; Skinner, D.Z.; Dubcovsky, J.; Garland-Campbell, K. Copy Number and Haplotype Variation at the VRN-A1 and Central FR-A2 Loci Are Associated with Frost Tolerance in Hexaploid Wheat. Theor. Appl. Genet. 2014, 127, 1183–1197. [Google Scholar] [CrossRef]
- Würschum, T.; Boeven, P.H.G.; Langer, S.M.; Longin, C.F.H.; Leiser, W.L. Multiply to Conquer: Copy Number Variations at Ppd-B1 and Vrn-A1 Facilitate Global Adaptation in Wheat. BMC Genet. 2015, 16, 96. [Google Scholar] [CrossRef]
- Muterko, A.; Salina, E. VRN1-Ratio Test for Polyploid Wheat. Planta 2019, 250, 1955–1965. [Google Scholar] [CrossRef]
- Grogan, S.M.; Brown-Guedira, G.; Haley, S.D.; McMaster, G.S.; Reid, S.D.; Smith, J.; Byrne, P.F. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains. PLoS ONE 2016, 11, e0152852. [Google Scholar] [CrossRef]
- Muterko, A. Copy Number Variation of the Vrn-A1b Allele in Emmer and Spelt Wheat. Curr. Chall. Plant Genet. Genom. Bioinform. Biotechnol. 2019, 24, 124–125. [Google Scholar] [CrossRef]
- Milec, Z.; Sumíková, T.; Tomková, L.; Pánková, K. Distribution of Different Vrn-B1 Alleles in Hexaploid Spring Wheat Germplasm. Euphytica 2013, 192, 371–378. [Google Scholar] [CrossRef]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
- Shcherban, A.B.; Efremova, T.T.; Salina, E.A. Identification of a New Vrn-B1 Allele Using Two near-Isogenic Wheat Lines with Difference in Heading Time. Mol. Breed. 2012, 29, 675–685. [Google Scholar] [CrossRef]
- Zhang, X.K.; Xiao, Y.G.; Zhang, Y.; Xia, X.C.; Dubcovsky, J.; He, Z.H. Allelic Variation at the Vernalization Genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese Wheat Cultivars and Their Association with Growth Habit. Crop Sci. 2008, 48, 458–470. [Google Scholar] [CrossRef]
- Eagles, H.A.; Cane, K.; Kuchel, H.; Hollamby, G.J.; Vallance, N.; Eastwood, R.F.; Gororo, N.N.; Martin, P.J. Photoperiod and Vernalization Gene Effects in Southern Australian Wheat. Crop Pasture Sci. 2010, 61, 721–730. [Google Scholar] [CrossRef]
- Muterko, A.; Balashova, I.; Cockram, J.; Kalendar, R.; Sivolap, Y. The New Wheat Vernalization Response Allele Vrn-D1s Is Caused by DNA Transposon Insertion in the First Intron. Plant Mol. Biol. Rep. 2015, 33, 294–303. [Google Scholar] [CrossRef]
- Shcherban, A.; Emtseva, M.; Efremova, T. Molecular Genetical Characterization of Vernalization Genes Vrn-A1, Vrn-B1 and Vrn-D1 in Spring Wheat Germplasm from Russia and Adjacent Regions. Cereal Res. Commun. 2012, 40, 351–361. [Google Scholar] [CrossRef]
- Shcherban, A.B.; Börner, A.; Salina, E.A. Effect of VRN-1 and PPD-D1 Genes on Heading Time in European Bread Wheat Cultivars. Plant Breed. 2015, 134, 49–55. [Google Scholar] [CrossRef]
- Milec, Z.; Strejčková, B.; Šafář, J. Contemplation on Wheat Vernalization. Front. Plant Sci. 2023, 13, 1093792. [Google Scholar] [CrossRef]
- Mcintosh, R.A.; Dubcovsky, J.; Rogers, W.J.; Morris, C.F.; Appels, R.; Xia, X.C.; Science, R.; Azul, C.; Aires, P.D.B.; Plant, M.; et al. Catalogue of Gene Symbols for Wheat: 2013–2014 Supplement. In Proceedings of the 12th International Wheat Genetics Symposium, Yokohama, Japan, 8–14 September 2013; Volume 60, pp. 1–31. [Google Scholar]
- Li, G.; Yu, M.; Fang, T.; Cao, S.; Carver, B.F.; Yan, L. Vernalization Requirement Duration in Winter Wheat Is Controlled by TaVRN-A1 at the Protein Level. Plant J. 2013, 76, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Li, G.; Yu, M.; Fang, T.; Cao, S.; Carver, B.F. Genetic Mechanisms of Vernalization Requirement Duration in Winter Wheat Cultivars. In Advances in Wheat Genetics: From Genome to Field: Proceedings of the 12th International Wheat Genetics Symposium; Springer: Tokyo, Japan, 2015; pp. 117–125. [Google Scholar]
- Distelfeld, A.; Tranquilli, G.; Li, C.; Yan, L.; Dubcovsky, J. Genetic and Molecular Characterization of the VRN2 Loci in Tetraploid Wheat. Plant Physiol. 2009, 149, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Handa, H.; Mori, N.; Kawaura, K.; Kitajima, A.; Nakazaki, T. Geographical Distribution and Adaptive Variation of VRN-A3 Alleles in Worldwide Polyploid Wheat (Triticum spp.) Species Collection. Planta 2021, 253, 132. [Google Scholar] [CrossRef] [PubMed]
- Berezhnaya, A.; Kiseleva, A.; Leonova, I.; Salina, E. Allelic Variation Analysis at the Vernalization Response and Photoperiod Genes in Russian Wheat Varieties Identified Two Novel Alleles of Vrn-B3. Biomolecules 2021, 11, 1897. [Google Scholar] [CrossRef] [PubMed]
- Pugsley, A.T. Additional Genes Inhibiting Winter Habit in Wheat. Euphytica 1972, 21, 547–552. [Google Scholar] [CrossRef]
- Katou, K. Chromosomal Location of the Genes for Vernalization Response, Vrn2 and Vrn4, in Common Wheat, Triticum aestivum L. Wheat Inf. Serv. 1993, 76, 53. [Google Scholar]
- McIntosh, R.A.; Yamazaki, Y.; Dubcovsky, J.; Rogers, J.W.; Morris, C.; Appels, R.; Xia, X.; Azul, B. Catalogue of Gene Symbols for Wheat: 2013–2014. In Proceedings of the 12th International Wheat Genetics Symposium, Yokohama, Japan, 8–14 September 2013; pp. 8–13. [Google Scholar]
- Xue, Q.; Xiong, H.; Zhou, C.; Guo, H.; Zhao, L.; Xie, Y.; Gu, J.; Zhao, S.; Ding, Y.; Xu, L.; et al. Gene Mapping and Identification of a Missense Mutation in One Copy of VRN-A1 Affects Heading Date Variation in Wheat. Int. J. Mol. Sci. 2023, 24, 5008. [Google Scholar] [CrossRef]
- Royo, C.; Dreisigacker, S.; Alfaro, C.; Ammar, K.; Villegas, D. Effect of Ppd-1 Genes on Durum Wheat Flowering Time and Grain Filling Duration in a Wide Range of Latitudes. J. Agric. Sci. 2016, 154, 612–631. [Google Scholar] [CrossRef]
- Nazim Ud Dowla, M.A.N.; Edwards, I.; O’Hara, G.; Islam, S.; Ma, W. Developing Wheat for Improved Yield and Adaptation under a Changing Climate: Optimization of a Few Key Genes. Engineering 2018, 4, 514–522. [Google Scholar] [CrossRef]
- Whittal, A.; Kaviani, M.; Graf, R.; Humphreys, G.; Navabi, A. Allelic Variation of Vernalization and Photoperiod Response Genes in a Diverse Set of North American High Latitude Winter Wheat Genotypes. PLoS ONE 2018, 13, e0203068. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; D’Agostino, N.; Taranto, F.; Sonnante, G.; Sestili, F.; Lafiandra, D.; De Vita, P. Whole-Exome Sequencing of Selected Bread Wheat Recombinant Inbred Lines as a Useful Resource for Allele Mining and Bulked Segregant Analysis. Front. Genet. 2022, 13, 1058471. [Google Scholar] [CrossRef]
- Walkowiak, S.; Gao, L.; Monat, C.; Haberer, G.; Kassa, M.T.; Brinton, J.; Ramirez-Gonzalez, R.H.; Kolodziej, M.C.; Delorean, E.; Thambugala, D.; et al. Multiple Wheat Genomes Reveal Global Variation in Modern Breeding. Nature 2020, 588, 277–283. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Nazzicari, N.; Bouizgaren, A.; Hayek, T.; Laouar, M.; Cornacchione, M.; Basigalup, D.; Monterrubio Martin, C.; Brummer, E.C.; Pecetti, L. Alfalfa Genomic Selection for Different Stress-Prone Growing Regions. Plant Genome 2022, 15, e20264. [Google Scholar] [CrossRef]
- Esposito, S.; Vitale, P.; Taranto, F.; Saia, S.; Pecorella, I.; D’Agostino, N.; Rodriguez, M.; Natoli, V.; De Vita, P. Simultaneous Improvement of Grain Yield and Grain Protein Concentration in Durum Wheat by Using Association Tests and Weighted GBLUP. Theor. Appl. Genet. 2023, 136, 242. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afshari-Behbahanizadeh, S.; Puglisi, D.; Esposito, S.; De Vita, P. Allelic Variations in Vernalization (Vrn) Genes in Triticum spp. Genes 2024, 15, 251. https://doi.org/10.3390/genes15020251
Afshari-Behbahanizadeh S, Puglisi D, Esposito S, De Vita P. Allelic Variations in Vernalization (Vrn) Genes in Triticum spp. Genes. 2024; 15(2):251. https://doi.org/10.3390/genes15020251
Chicago/Turabian StyleAfshari-Behbahanizadeh, Sanaz, Damiano Puglisi, Salvatore Esposito, and Pasquale De Vita. 2024. "Allelic Variations in Vernalization (Vrn) Genes in Triticum spp." Genes 15, no. 2: 251. https://doi.org/10.3390/genes15020251
APA StyleAfshari-Behbahanizadeh, S., Puglisi, D., Esposito, S., & De Vita, P. (2024). Allelic Variations in Vernalization (Vrn) Genes in Triticum spp. Genes, 15(2), 251. https://doi.org/10.3390/genes15020251