Effect of Supplementation with Curcuma longa and Rosmarinus officinalis Extract Mixture on Acute Phase Protein, Cathelicidin, Defensin and Cytolytic Protein Gene Expression in the Livers of Young Castrated Polish White Improved Bucks
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuliani, A.; Esbjerg, L.; Grunert, K.G.; Bovolenta, S. Animal Welfare and Mountain Products from Traditional Dairy Farms: How Do Consumers Perceive Complexity? Animals 2018, 8, 207. [Google Scholar] [CrossRef] [PubMed]
- Stanger, B.Z. Cellular Homeostasis and Repair in the Mammalian Liver. Annu. Rev. Physiol. 2015, 77, 179–200. [Google Scholar] [CrossRef] [PubMed]
- Kubes, P.; Jenne, C. Immune Responses in the Liver. Annu. Rev. Immunol. 2018, 36, 247–277. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar]
- Qadir, M.I.; Qousain, S.T.; Muhammad, S.A. Curcumin: A Polyphenol with Moleculat Targets for Cancer Control. Asian Pac. J. Cancer Prev. 2016, 17, 2735–2739. [Google Scholar]
- Domarla, S.R.; Komma, R.; Bhatnagar, U.; Rajesh, N.; Mulla, S.M.A. An Evaluation of the Genotoxicity and Subchronic Oral Toxicity of Synthetic Curcumin. J. Toxicol. 2018, 2018, 6872753. [Google Scholar] [CrossRef] [PubMed]
- Petiwala, S.M.; Puthenveetil, A.G.; Johnson, J.J. Polyphenols from the Mediterranean herb rosemary (Rosmarinus officinalis) for prostate cancer. Front. Pharmacol. 2013, 4, 29. [Google Scholar] [CrossRef]
- Murata, H.; Shimada, N.; Yoshioka, M. Current research on acute phase proteins in veterinary diagnosis: An overview. Vet. J. 2004, 168, 28–40. [Google Scholar]
- Ceciliani, F.; Ceron, J.J.; Eckersall, P.D.; Sauerwein, H. Acute phase proteins in ruminants. J. Proteom. 2012, 75, 4207–4231. [Google Scholar]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar]
- Reczyńska, D.; Zalewska, M.; Czopowicz, M.; Kaba, J.; Zwierzchowski, L.; Bagnicka, E. Acute Phase Protein Levels as An Auxiliary Tool in Diagnosing Viral Diseases in Ruminants—A Review. Viruses 2018, 10, 502. [Google Scholar] [CrossRef] [PubMed]
- Zalewska, M.; Kapusta, A.; Kawecka-Grochocka, E.; Urbańska, D.M.; Czopowicz, M.; Kaba, J.; Brzozowska, P.; Bagnicka, E. Effect of Supplementation with Organic Selenium or Turmeric and Rosemary Mixture on Beta-Defensin Content in Goat Milk. Animals 2022, 12, 2948. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, H.; Shi, J.; Ganz, T.; Ross, C.R.; Blecha, F. Molecular cloning and tissue expression of porcine beta-defensin-1. FEBS Lett. 1998, 424, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Sevgisunar, N.S.; Şahinduran, S. Evaluation of Some Ecute Phase Proteins, Cytokines and Hepcidin Levels in Naturally Infected Saanen Goats with Paratuberculosis. MAKU J. Health Sci. Inst. 2021, 9, 29–37. [Google Scholar] [CrossRef]
- Michels, K.; Nemeth, E.; Ganz, T.; Mehrad, B. Hepcidin and Host Defense against Infectious Diseases. PLoS Pathog. 2015, 11, e1004998. [Google Scholar] [CrossRef]
- Shamova, O.; Brogden, K.A.; Zhao, C.; Nguyen, T.; Korkyakov, V.N.; Lehrer, R.I. Purfication and Properties of Proline-Rich Antimicrobial Peptides from Sheep and Goat Leukocytes. Infect. Immun. 1999, 67, 4106–4111. [Google Scholar] [CrossRef]
- Aksel, E.G.; Akyüz, B. Effect of LPS and LTA stimulation on the expression of TLR-pathway genes in PBMCs of Akkaraman lambs in vivo. Trop. Anim. Health Prod. 2021, 53, 65. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from milk: Nutraceutical and pharmacological properties. Pharmaceuticalis 2016, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef]
- Czopowicz, M.; Szaluś-Jordanow, O.; Moroz, A.; Mickiewicz, M.; Witkowski, L.; Markowska-Daniel, I.; Bagnicka, E.; Kaba, J. Use of two commercial caprine arthritis–encephalitis immunoenzymatic assays for screening of arthritic goats. J. Vet. Diagn. Investig. 2018, 30, 36–41. [Google Scholar] [CrossRef]
- Dong, H.; Wang, S.; Jia, Y.; Ni, Y.; Zhang, Y.; Zhuang, S.; Shen, X.; Zhao, R. Long-Term Effects of Subacute Ruminal Acidosis (SARA)on Milk Quality and Hepatic Gene Expression in Lactating Goats Fed a High-Concentrate Diet. PLoS ONE 2013, 8, 12. [Google Scholar] [CrossRef]
- Wilson, S.S.; Wiens, M.E.; Smith, J.G. Antiviral mechanisms of human defensins. J. Mol. Biol. 2013, 425, 4965–4980. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, H.; Huang, J.; Ouyang, L.; Li, S.; Tang, Y. Identification and expression analysis of the β-defensin genes in the goat small intestine. Gene 2021, 801, 145846. [Google Scholar] [CrossRef] [PubMed]
- Tai, M.; Jiang, Y.; Ren, Y.; Jin, L.; Qiao, L.; Zhang, C. Expression pattern analysis of goat beta-defensin 124 and its location in the reproductive organs. Acta Vet. Zootech. Sin. 2017, 48, 454–461. [Google Scholar]
- Bagnicka, E.; Prusak, B.; Kościuczuk, E.; Jarczak, J.; Kaba, J.; Strzałkowska, N.; Jóźwik, A.; Czopowicz, M.; Krzyżewski, J.; Zwierzchowski, L. A Note on the Organization and Expression of β-Defensin Genes in Polish Goats. J. Appl. Genet. 2013, 54, 125–127. [Google Scholar] [CrossRef]
- Ranjan, R.; Singh, P.; Singh, S.P.; Gururaj, K.; Kharche, S.D.; Singh, M.K. Status of Beta Defensin-1 and Its Effect on Post Thaw Semen Fertility Gene Expression in Indian Goat Breed. Cryoletters 2021, 42, 137–145. [Google Scholar]
- Reczyńska, D.; Witek, B.; Jarczak, J.; Czopowicz, M.; Mickiewicz, M.; Kaba, J.; Zwierzchowski, L.; Bagnicka, E. The Impact of Organic vs. Inorganic Selenium on Dairy Goat Productivity and Expression of Selected Genes in Milk Somatic Cells. J. Dairy Res. 2019, 86, 48–54. [Google Scholar] [CrossRef]
- Jarczak, J.; Kościuczuk, E.; Ostrowska, M.; Lisowski, P.; Strzałkowska, N.; Jóźwik, A.; Krzyżewski, J.; Zwierzchowski, L.; Słoniewska, D.; Bagnicka, E. The effects of diet supplementation with yeast on the expression of selected immune system genes in the milk somatic cells of dairy goats. Anim. Sci. Pap. Rep. 2014, 32, 41–53. [Google Scholar]
- Hessin, A.; Hegazy, R.; Hassan, A.; Yassin, N.; Kenawy, S. Lactoferrin enhanced apoptosis and protected against thioacetamide-induced liver fibrosis in rats. Open Access Maced. J. Med. Sci. 2015, 3, 195. [Google Scholar] [CrossRef]
- Popko, K.; Gorska, E.; Stelmaszczyk-Emmel, A.; Plywaczewski, R.; Stoklosa, A.; Gorecka, D.; Pyrzak, B.; Demkow, U. Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur. J. Med. Res. 2010, 15 (Suppl. 2), 120–122. [Google Scholar] [CrossRef]
- Reczyńska, D.; Zalewska, M.; Czopowicz, M.; Kaba, J.; Zwierzchowski, L.; Bagnicka, E. Small ruminant lentivirus infection influences expression of acute phase proteins and cathelicidin genes in milk somatic cells and peripheral blood leukocytes of dairy goats. Vet. Res. 2018, 49, 113. [Google Scholar] [CrossRef]
- Deptuła, J.; Tokarz-Deptuła, B.; Malinowska-Borysiak, M.; Stosik, M.; Deptuła, W. Cathelicidins in humans and animals. Adv. Microbiol. Postępy Mikrobiol. 2019, 58, 19–28. [Google Scholar] [CrossRef]
- Zhang, G.-W.; Lai, S.-J.; Yoshimura, Y.; Isobe, N. Expression of cathelicidins mRNA in the goat mammary gland and effect of the intramammary infusion of lipopolysaccharide on milk cathelicidin-2 concentration. Vet. Microbiol. 2014, 170, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Shamova, O.V.; Orlov, D.S.; Zharkova, M.S.; Balandin, S.V.; Yamschikova, E.V.; Knappe, D.; Hoffmann, R.; Kokryakov, V.N.; Ovchinnikova, T.V. Minibactenecins ChBac7.Nα and ChBac7. Nβ—Antimicrobial Peptides from Leukocytes of the Goat Capra hircus. Acta Naturae 2016, 8, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Isobe, N. Control mechanisms for producing antimicrobial factors in ruminant mammary gland. Anim. Sci. J. 2017, 88, 937–943. [Google Scholar] [CrossRef]
- Jarczak, J.; Kaba, J.; Bagnicka, E. The validation of housekeeping genes as a reference in quantitative Real Time PCR analysis. Application in the milk somatic cells and frozen whole blood of goats infected with caprine arthritis encephalitis virus. Gene 2014, 549, 280–285. [Google Scholar] [CrossRef]
- Brenaut, P.; Lefèvre, L.; Rau, A.; Laloë, D.; Pisoni, G.; Moroni, P.; Bevilacqua, C.; Martin, P. Contribution of mammary epithelial cells to the immune response during early stages of a bacterial infection to Staphylococcus aureus. BMC Vet. Res. 2014, 45, 16. [Google Scholar] [CrossRef]
- Ceciliani, F.; Rahman, M.M.; Lecchi, C.; Maccalli, M.; Pisoni, G.; Sartorelli, P. Systemic and in vitro expression of goat α-acid glycoprotein during Caprine Arthritis-Encephalitis Virus infection. Vet. Immunol. Immunopathol. 2009, 131, 50–58. [Google Scholar] [CrossRef]
- Restelli, L.; Codrea, M.C.; Savoini, G.; Ceciliani, F.; Bendixen, E. LC-MS/MS analysis of visceral and subcutaneous adipose tissue proteomes in young goats with focus on innate immunity and inflammation related proteins. J. Proteom. 2014, 108, 295–305. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbańska, D.M.; Pawlik, M.; Korwin-Kossakowska, A.; Czopowicz, M.; Rutkowska, K.; Kawecka-Grochocka, E.; Mickiewicz, M.; Kaba, J.; Bagnicka, E. Effect of Supplementation with Curcuma longa and Rosmarinus officinalis Extract Mixture on Acute Phase Protein, Cathelicidin, Defensin and Cytolytic Protein Gene Expression in the Livers of Young Castrated Polish White Improved Bucks. Genes 2023, 14, 1932. https://doi.org/10.3390/genes14101932
Urbańska DM, Pawlik M, Korwin-Kossakowska A, Czopowicz M, Rutkowska K, Kawecka-Grochocka E, Mickiewicz M, Kaba J, Bagnicka E. Effect of Supplementation with Curcuma longa and Rosmarinus officinalis Extract Mixture on Acute Phase Protein, Cathelicidin, Defensin and Cytolytic Protein Gene Expression in the Livers of Young Castrated Polish White Improved Bucks. Genes. 2023; 14(10):1932. https://doi.org/10.3390/genes14101932
Chicago/Turabian StyleUrbańska, Daria M., Marek Pawlik, Agnieszka Korwin-Kossakowska, Michał Czopowicz, Karolina Rutkowska, Ewelina Kawecka-Grochocka, Marcin Mickiewicz, Jarosław Kaba, and Emilia Bagnicka. 2023. "Effect of Supplementation with Curcuma longa and Rosmarinus officinalis Extract Mixture on Acute Phase Protein, Cathelicidin, Defensin and Cytolytic Protein Gene Expression in the Livers of Young Castrated Polish White Improved Bucks" Genes 14, no. 10: 1932. https://doi.org/10.3390/genes14101932
APA StyleUrbańska, D. M., Pawlik, M., Korwin-Kossakowska, A., Czopowicz, M., Rutkowska, K., Kawecka-Grochocka, E., Mickiewicz, M., Kaba, J., & Bagnicka, E. (2023). Effect of Supplementation with Curcuma longa and Rosmarinus officinalis Extract Mixture on Acute Phase Protein, Cathelicidin, Defensin and Cytolytic Protein Gene Expression in the Livers of Young Castrated Polish White Improved Bucks. Genes, 14(10), 1932. https://doi.org/10.3390/genes14101932