Electrophysiology-Guided Genetic Characterisation Maximises Molecular Diagnosis in an Irish Paediatric Inherited Retinal Degeneration Population
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Demographics
3.2. Visual Acuity
3.3. Refractive Error
3.4. Other Ocular Co-Morbidities
3.5. Genetic Analysis
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teoh, L.J.; Solebo, A.L.; Rahi, J.S.; Morton, C.; Allen, L.; McPhee, D.; Brennan, R.; Pennefather, P.; Kattakayan, C.; Ramm, L.; et al. Visual impairment, severe visual impairment, and blindness in children in Britain (BCVIS2): A national observational study. Lancet Child Adolesc. Health 2021, 5, 190–200. [Google Scholar] [CrossRef]
- Gilbert, C.; Foster, A. Epidemiology of childhood blindness. In Paediatric Ophthalmology; Moore, A., Ed.; BMJ Books: London, UK, 2000; pp. 1–13. [Google Scholar]
- Solebo, A.L.; Teoh, L.; Rahi, J. Epidemiology of blindness in children. Arch. Dis. Child. 2017, 102, 853–857. [Google Scholar] [CrossRef]
- Taylor, D.; Hoyt, C. (Eds.) Paediatric Ophthalmology and Strabismus, 3rd ed.; Blackwell Science Ltd: Oxford, UK, 2003. [Google Scholar]
- Gilbert, C.; Rahi, J.; Eckstein, M.; Foster, A. Hereditary disease as a cause of childhood blindness: Regional variation. Results of blind school studies undertaken in countries of Latin America, Asia and Africa. Ophthalmic Genet. 1995, 16, 1–10. [Google Scholar] [CrossRef]
- Rahi, J.S.; Cable, N. British Childhood Visual Impairment Study Group. Severe visual impairment and blindness in children in the UK. Lancet 2003, 362, 1359–1365. [Google Scholar] [CrossRef]
- Sharif, W.; Sharif, Z. Leber’s congenital amaurosis and the role of gene therapy in congenital retinal disorders. Int. J. Ophthalmol. 2017, 10, 480–484. [Google Scholar] [CrossRef]
- Steinkuller, P.G.; Du, L.; Gilbert, C.; Foster, A.; Collins, M.L.; Coats, D.K. Childhood blindness. J. Am. Assoc. Pediatric Ophthalmol. Strabismus 1999, 3, 26–32. [Google Scholar] [CrossRef]
- Berger, W.; Kloeckener-Gruissem, B.; Neidhardt, J. The molecular basis of human retinal and vitreoretinal diseases. Prog. Retin. Eye Res. 2010, 29, 335–375. [Google Scholar] [CrossRef]
- Daiger, S.P. Summaries of Genes and Loci Causing Retinal Diseases (RetNet); The University of Texas Health Science Center: Houston, TX, USA, 2020; Available online: https://sph.uth.edu/retnet/ (accessed on 8 November 2021).
- Weiss, A.; Biersdorf, W. Visual sensory disorders in congenital nystagmus. Ophthalmology 1989, 96, 517–523. [Google Scholar] [CrossRef]
- The Global Challenge of Rare Disease Diagnosis: A Policy Briefing. 2015. Available online: https://www.shire.com/media/shire/shireglobal/shirecolombia/pdffiles/patient/diagnosis/rarediseasedayglobalchallenge.pdf (accessed on 8 November 2021).
- Diabetes, T.L. Spotlight on rare diseases. Lancet Diabetes Endocrinol. 2019, 7, 75. [Google Scholar] [CrossRef]
- Stephenson, K.A.J.; Zhu, J.; Wynne, N.; Dockery, A.; Cairns, R.M.; Duignan, E.; Whelan, L.; Malone, C.P.; Dempsey, H.; Collins, K.; et al. Target 5000: A standardized all-Ireland pathway for the diagnosis and management of inherited retinal degenerations. Orphanet J. Rare Dis. 2021, 16, 200. [Google Scholar] [CrossRef]
- Di Iorio, V.; Karali, M.; Brunetti-Pierri, R.; Filippelli, M.; Di Fruscio, G.; Pizzo, M.; Mutarelli, M.; Nigro, V.; Testa, F.; Banfi, S.; et al. Clinical and genetic evaluation of a cohort of pediatric patients with severe inherited retinal dystrophies. Genes 2017, 8, 280. [Google Scholar] [CrossRef]
- Henderson, R.H. Inherited retinal dystrophies. Paediatr. Child Health 2020, 30, 19–27. [Google Scholar] [CrossRef]
- Davies, E.C.; Pineda, R., II. Cataract surgery outcomes and complications in retinal dystrophy patients. Can. J. Ophthalmol. 2017, 52, 543–547. [Google Scholar] [CrossRef]
- Hogden, M.C.; Tsang, S. Clinical and Pathological Features of Selected Human Retinal Degenerative Diseases. In Cell-Based Therapy for Degenerative Retinal Disease; Stem Cell Biology and Regenerative Medicine; Zarbin, M., Singh, M., Casaroli-Marano, R., Eds.; Humana Press: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Varela, M.D.; de Guimaraes, T.A.C.; Georgiou, M.; Michaelides, M. Leber congenital amaurosis/early-onset severe retinal dystrophy: Current management and clinical trials. Br. J. Ophthalmol. 2021, 106. [Google Scholar] [CrossRef]
- Stone, E.M.; Andorf, J.L.; Whitmore, S.S.; DeLuca, A.P.; Giacalone, J.C.; Streb, L.M.; Braun, T.A.; Mullins, R.F.; Scheet, T.E.; Sheffield, V.C.; et al. Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease. Ophthalmology 2017, 124, 1314–1331. [Google Scholar] [CrossRef]
- Suppiej, A.; Marino, S.; Reffo, M.E.; Maritan, V.; Vitaliti, G.; Mailo, J.; Falsaperla, R. Early onset retinal dystrophies: Clinical clues to diagnosis for pediatricians. Ital. J. Pediatrics 2019, 45, 168. [Google Scholar] [CrossRef]
- Flitcroft, D.I.; Adams, G.G.; Robson, A.G.; Holder, G.E. Retinal dysfunction and refractive errors: An electrophysiological study of children. Br. J. Ophthalmol. 2005, 89, 484–488. [Google Scholar] [CrossRef]
- Hamblion, E.L.; Moore, A.T.; Rahi, J.S. Incidence and patterns of detection and management of childhood-onset hereditary retinal disorders in the UK. Br. J. Ophthalmol. 2012, 96, 360–365. [Google Scholar] [CrossRef]
- Boughman, J.A.; Vernon, M.; Shaver, K.A. Usher syndrome: Definition and estimate of prevalence from two high-risk populations. J. Chronic Dis. 1983, 36, 595–603. [Google Scholar] [CrossRef]
- Yan, D.; Liu, X.Z. Genetics and pathological mechanisms of Usher syndrome. J. Hum. Genet. 2010, 55, 327–335. [Google Scholar] [CrossRef]
- Jauregui, R.; Cho, G.Y.; Takahashi, V.K.; Takiuti, J.T.; Bassuk, A.G.; Mahajan, V.B.; Tsang, S.H. Caring for hereditary childhood retinal blindness. Asia-Pac. J. Ophthalmol. 2018, 7, 183–191. [Google Scholar] [CrossRef]
- Galvin, O.; Chi, G.; Brady, L.; Hippert, C.; Rubido, M.D.V.; Daly, A.; Michaelides, M. The Impact of Inherited Retinal Diseases in the Republic of Ireland (ROI) and the United Kingdom (UK) from a Cost-of-Illness Perspective. Clin. Ophthalmol. 2020, 14, 707–719. [Google Scholar] [CrossRef]
- Castro, C.T.; Berezovsky, A.; Castro, D.D.; Salomão, S.R. Visual rehabilitation in patients with retinitis pigmentosa. Arq. Bras. Oftalmol. 2006, 69, 687–690. [Google Scholar] [CrossRef][Green Version]
- Bier, C.M.; Fröhlich, S.J. Visual rehabilitation in patients with hereditary retinal dystrophy: Current data from a Low Vision Department. Klin. Mon. Fur Augenheilkd. 2009, 226, 421–427. [Google Scholar] [CrossRef]
- FDA. FDA Approves Novel Gene Therapy to Treat Patients with a Rare Form of Inherited Vision Loss; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2017.
- Sodi, A.; Banfi, S.; Testa, F.; Della Corte, M.; Passerini, I.; Pelo, E.; Rossi, S.; Simonelli, F. RPE65-associated inherited retinal diseases: Consensus recommendations for eligibility to gene therapy. Orphanet J. Rare Dis. 2021, 16, 257. [Google Scholar] [CrossRef]
- Cehajic-Kapetanovic, J.; Xue, K.; Martinez-Fernandez de la Camara, C.; Nanda, A.; Davies, A.; Wood, L.J.; Salvetti, A.P.; Fischer, M.D.; Aylward, J.W.; Barnard, A.R.; et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat. Med. 2020, 26, 354–359. [Google Scholar] [CrossRef]
- Ameri, H. Prospect of retinal gene therapy following commercialization of voretigene neparvovec-rzyl for retinal dystrophy mediated by RPE65 mutation. J. Curr. Ophthalmol. 2018, 30, 1–2. [Google Scholar] [CrossRef]
- Cukras, C.; Wiley, H.E.; Jeffrey, B.G.; Sen, H.N.; Turriff, A.; Zeng, Y.; Vijayasarathy, C.; Marangoni, D.; Ziccardi, L.; Kjellstrom, S.; et al. Retinal AAV8-RS1 Gene Therapy for X-Linked Retinoschisis: Initial Findings from a Phase I/IIa Trial by Intravitreal Delivery. Mol. Ther. J. Am. Soc. Gene Ther. 2018, 26, 2282–2294. [Google Scholar] [CrossRef]
- Trapani, I.; Auricchio, A. Seeing the light after 25 years of retinal gene therapy. Trends Mol. Med. 2018, 24, 669–681. [Google Scholar] [CrossRef]
- Arbabi, A.; Liu, A.; Ameri, H. Gene therapy for inherited retinal degeneration. J. Ocul. Pharmacol. Ther. 2019, 35, 79–97. [Google Scholar] [CrossRef]
- Lee, J.H.; Wang, J.H.; Chen, J.; Li, F.; Edwards, T.L.; Hewitt, A.W.; Liu, G.S. Gene therapy for visual loss: Opportunities and concerns. Prog. Retin. Eye Res. 2019, 68, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Ramlogan-Steel, C.A.; Murali, A.; Andrzejewski, S.; Dhungel, B.; Steel, J.C.; Layton, C.J. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: Trials, future directions and safety considerations. Clin. Exp. Ophthalmol. 2019, 47, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Prado, D.A.; Acosta-Acero, M.; Maldonado, R.S. Gene therapy beyond luxturna: A new horizon of the treatment for inherited retinal disease. Curr. Opin. Ophthalmol. 2020, 31, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, N.; Michaelides, M.; Smith, A.J.; Ali, R.R.; Bainbridge, J.W. Retinal gene therapy. Br. Med. Bull. 2018, 126, 13–25. [Google Scholar] [CrossRef]
- Tan, M.H.; Smith, A.J.; Pawlyk, B.; Xu, X.; Liu, X.; Bainbridge, J.B.; Basche, M.; McIntosh, J.; Tran, H.V.; Nathwani, A.; et al. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: Effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Hum. Mol. Genet. 2009, 18, 2099–2114. [Google Scholar] [CrossRef]
- Garafalo, A.V.; Cideciyan, A.V.; Héon, E.; Sheplock, R.; Pearson, A.; Yu, C.W.; Sumaroka, A.; Aguirre, G.D.; Jacobson, S.G. Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives. Prog. Retin. Eye Res. 2020, 77, 100827. [Google Scholar] [CrossRef]
- Sun, X.; Pawlyk, B.; Xu, X.; Liu, X.; Bulgakov, O.V.; Adamian, M.; Sandberg, M.A.; Khani, S.C.; Tan, M.-H.; Smith, A.J.; et al. Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations. Gene Ther. 2010, 17, 117–131. [Google Scholar] [CrossRef]
- Maguire, A.M.; High, K.A.; Auricchio, A.; Wright, J.F.; Pierce, E.A.; Testa, F.; Mingozzi, F.; Bennicelli, J.L.; Ying, G.-S.; Rossi, S.; et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: A phase 1 dose-escalation trial. Lancet 2009, 374, 1597–1605. [Google Scholar] [CrossRef]
- Whelan, L.; Dockery, A.; Wynne, N.; Zhu, J.; Stephenson, K.; Silvestri, G.; Turner, J.; O’Byrne, J.J.; Carrigan, M.; Humphrie, P.; et al. Findings from a Genotyping Study of Over 1000 People with Inherited Retinal Disorders in Ireland. Genes 2020, 11, 105. [Google Scholar] [CrossRef]
- Dockery, A.; Stephenson, K.; Keegan, D.; Wynne, N.; Silvestri, G.; Humphries, P.; Kenna, P.F.; Carrigan, M.; Farrar, G.J. Target 5000: Target capture sequencing for inherited retinal degenerations. Genes 2017, 8, 304. [Google Scholar] [CrossRef]
- Carrigan, M.; Duignan, E.; Malone, C.P.; Stephenson, K.; Saad, T.; McDermott, C.; Green, A.; Keegan, D.; Humphries, P.; Kenna, P.F.; et al. Panel-based population next-generation sequencing for inherited retinal degenerations. Sci. Rep. 2016, 6, 33248. [Google Scholar] [CrossRef] [PubMed]
- Blueprint Genetics. Retinal Dystrophy Panel. Available online: https://blueprintgenetics.com/tests/panels/ophthalmology/retinal-dystrophy-panel/ (accessed on 8 November 2021).
- Sieving, P.A.; Fishman, G.A. Refractive errors of retinitis pigmentosa patients. Br. J. Ophthalmol. 1978, 62, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, K.; Dockery, A.; Wynne, N.; Carrigan, M.; Kenna, P.; Farrar, G.J.; Keegan, D. Multimodal imaging in a pedigree of X-linked Retinoschisis with a novel RS1 variant. BMC Med. Genet. 2018, 19, 195. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, K.A.; Zhu, J.; Dockery, A.; Whelan, L.; Burke, T.; Turner, J.; O’Byrne, J.J.; Farrar, G.J.; Keegan, D.J. Clinical and Genetic Re-Evaluation of Inherited Retinal Degeneration Pedigrees following Initial Negative Findings on Panel-Based Next Generation Sequencing. Int. J. Mol. Sci. 2022, 23, 995. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.R.; Biesecker, B.B.; Blout, C.L.; Christensen, K.D.; Amendola, L.M.; Bergstrom, K.L.; Biswas, S.; Bowling, K.M.; Brothers, K.B.; Conlin, L.K.; et al. Secondary findings from clinical genomic sequencing: Prevalence, patient perspectives, family history assessment, and health-care costs from a multisite study. Genet. Med. 2019, 21, 1100–1110. [Google Scholar] [CrossRef]
- Zhu, J.; Stephenson, K.A.; Farrar, G.J.; Turner, J.; O’Byrne, J.J.; Keegan, D. Management of significant secondary genetic findings in an ophthalmic genetics clinic. Eye 2022, 36, 896–898. [Google Scholar] [CrossRef]
- Dockery, A.; Whelan, L.; Humphries, P.; Farrar, G.J. Next-Generation Sequencing Applications for Inherited Retinal Diseases. Int. J. Mol. Sci. 2021, 22, 5684. [Google Scholar] [CrossRef]
- Lenassi, E.; Clayton-Smith, J.; Douzgou, S.; Ramsden, S.C.; Ingram, S.; Hall, G.; Hardcastle, C.L.; Fletcher, T.A.; Taylor, R.L.; Ellingford, J.M.; et al. Clinical utility of genetic testing in 201 preschool children with inherited eye disorders. Genet. Med. 2020, 22, 745–751. [Google Scholar] [CrossRef]
- Sheck, L.H.; Esposti, S.D.; Mahroo, O.A.; Arno, G.; Pontikos, N.; Wright, G.; Webster, A.R.; Khan, K.N.; Michaelides, M. Panel-based genetic testing for inherited retinal disease screening 176 genes. Mol. Genet. Genom. Med. 2021, 9, e1663. [Google Scholar] [CrossRef]
- Taylor, R.L.; Parry, N.R.; Barton, S.J.; Campbell, C.; Delaney, C.M.; Ellingford, J.M.; Hall, G.; Hardcastle, C.; Morarji, J.; Nichol, E.J.; et al. Panel-based clinical genetic testing in 85 children with inherited retinal disease. Ophthalmology 2017, 124, 985–991. [Google Scholar] [CrossRef]
- Khan, A.O. Phenotype-guided genetic testing of pediatric inherited retinal disease in the United Arab Emirates. Retina 2020, 40, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Hayward, J.D.; Tailor, V.; Nyanhete, R.; Ahlfors, H.; Gabriel, C.; Jannini, T.B.; Abbou-Rayyah, Y.; Henderson, R.; Nischal, K.K.; et al. The Oculome panel test: Next-generation sequencing to diagnose a diverse range of genetic developmental eye disorders. Ophthalmology 2019, 126, 888–907. [Google Scholar] [CrossRef]
- AAO. Guidelines for Refractive Correction in Infants and Young Children. Available online: https://www.aao.org/Assets/e27390d7-f46d-4122-a1c8-41e4ce045811/636458251660630000/table-3-11-8-17-pdf (accessed on 8 November 2021).
- Chan, W.O.; Brennan, N.; Webster, A.R.; Michaelides, M.; Muqit, M.M. Retinal detachment in retinitis pigmentosa. BMJ Open Ophthalmol. 2020, 5, e000454. [Google Scholar] [CrossRef] [PubMed]
- Burton, T.C. The influence of refractive error and lattice degeneration on the incidence of retinal detachment. Trans. Am. Ophthalmol. Soc. 1989, 87, 143–157. [Google Scholar]
- Fischer, M.D.; Michalakis, S.; Wilhelm, B.; Zobor, D.; Muehlfriedel, R.; Kohl, S.; Weisschuh, N.; Ochakovski, G.A.; Klein, R.; Schoen, C.; et al. Safety and vision outcomes of subretinal gene therapy targeting cone photoreceptors in achromatopsia: A nonrandomized controlled trial. JAMA Ophthalmol. 2020, 138, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Leroy, B.P.; Russell, S.R.; Bennett, J.; High, K.A.; Drack, A.V.; Yu, Z.F.; Tillman, A.; Chung, D.; Reape, K.Z.; Maguire, A.M. 89 Five-year update for the Phase III voretigene neparvovec study in biallelic RPE65 mutation-associated inherited retinal disease. Arch. Dis. Child. 2021, 106, A37–A38. [Google Scholar] [CrossRef]
- Marmoy, O.R.; Moinuddin, M.; Thompson, D.A. An alternative electroretinography protocol for children: A study of diagnostic agreement and accuracy relative to ISCEV standard electroretinograms. Acta Ophthalmol. 2021. [Google Scholar] [CrossRef]
Diagnosis | N = (%) | Age (Range) | SD Age | Gender % Male | Referring EP Findings |
---|---|---|---|---|---|
AS | 1 (1.4) | 9 | - | 100% | Flat ERG (i.e., no retinal response) |
BVMD | 3 (4.3) | 12.67 (5–18) | 6.43 | 67% | EOG: reduced Arden ratio |
CD | 17 (24.3) | 13.94 (2–19) | 5.55 | 53% | ERG: Unrecordable cone responses without rod involvement |
CSNB | 9 (12.9) | 18 (7–28) | 6.69 | 67% | ERG: Electronegativity, normal 30 Hz waveform, with residual rod response |
LCA | 10 (14.3) | 5 (1–9) | 4.16 | 70% | ERG: No recordable retinal function VEP: Residual small amplitude flash VEP response |
RCD | 18 (25.7) | 16.11 (6–22) | 4.54 | 56% | ERG: Reduced/absent rod response with less pronounced cone attenuation |
STGD | 5 (7.1) | 19.6 (14–25) | 4.72 | 60% | ERG: Reduced 30 Hz flicker with preservation of rod function |
XLRS | 7 (10) | 13.14 (7–21) | 4.43 | 100% | ERG: Electronegativity |
Diagnosis | No. of Patients (N =) | VA Right Eye | VA Left Eye |
---|---|---|---|
AS | 1/1 | 1.48 | 1.48 |
BVMD | 3/3 | 0.10 ± 0.17 | 0.10 ± 0.17 |
CD | 15/17 | 0.89 ± 0.39 | 0.92 ± 0.34 |
CSNB | 9/9 | 0.37 ± 0.19 | 0.36 ± 0.20 |
LCA | 5/10 | 0.94 ± 0.60 | 0.98 ± 0.63 |
RCD | 17/18 | 0.36 ± 0.34 | 0.36 ± 0.34 |
STGD | 5/5 | 1.10 ± 0.41 | 1.11 ± 0.39 |
XLRS | 7/7 | 0.48 ± 0.11 | 0.38 ± 0.26 |
Diagnosis | No. of Patients (N =) | Refraction (Spherical Equivalent, D) | Astigmatism (D) |
---|---|---|---|
AS | 1/1 | +7.63 | 1.75 |
BVMD | 1/3 | +2.38 | 0.25 ± 0.35 |
CD | 16/17 | −0.74 ± 6.54 | 0.92 ± 0.99 |
CSNB | 9/9 | −8.99 ± 3.23 | 2.24 ± 0.99 |
LCA | 7/10 | +5.38 ± 2.37 | 0.82 ± 0.77 |
RCD | 14/18 | −4.96 ± 6.45 | 1.77 ± 1.01 |
STGD | 2/5 | −2.91 ± 1.64 | 1.69 ± 1.10 |
XLRS | 3/7 | +2.94 ± 2.32 | 0.46 ± 0.60 |
Diagnosis | N= | Cataract (n =) | Pseudophakia (n =) | CML (n =) | RRD (n =) | Amblyopia (n =) | Glaucoma (n =) |
---|---|---|---|---|---|---|---|
AS | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
BVMD | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
CD | 17 | 1 | 0 | 0 | 0 | 1 | 0 |
CSNB | 9 | 0 | 0 | 0 | 0 | 4 | 0 |
LCA | 10 | 0 | 0 | 0 | 0 | 1 | 0 |
RCD | 18 | 3 | 0 | 0 | 0 | 2 | 0 |
STGD | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
XLRS | 7 | 1 | 1 | 7 | 1 | 3 | 0 |
Total | 70 | 5 (7.2%) | 1 (1.4%) | 7 (10%) | 1 (1.4%) | 11 (15.7%) | 0 (0%) |
Diagnosis | N = | Genetically Solved % | Associated Gene |
---|---|---|---|
AS | 1/1 | 100% | ALMS1 |
BVMD | 3/3 | 100% | BEST1 |
CD | 12/17 | 70.6% | CNGB3 (n = 6), CNGA3 (n = 3), PDE6H (n = 1), KCNV2 (n = 1) |
CSNB | 8/9 | 88.9% | NYX (n = 4), TRPM1 (n = 3), CACNA1F (n = 1) |
LCA | 9/10 | 90% | RPE65 (n = 2), CEP290 (n = 2), AIPL1 (n = 2), RDH12 (n = 1), CRX (n = 1), CRB1 (n = 1) |
RCD | 15/18 | 83.3% | XL: RPGR (n = 5), RP2 (n = 1) AD: PRPF31 (n = 2), RHO (n = 1), PRPF8 (n = 1), AR: CNGB1 (n = 1), RLBP1 (n = 1), IMPDH1 (n = 1), MYO7A (n = 1), BBS1 (n = 1) |
STGD | 5/5 | 100% | ABCA4 |
XLRS | 7/7 | 100% | RS1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Stephenson, K.A.J.; Dockery, A.; Turner, J.; O’Byrne, J.J.; Fitzsimon, S.; Farrar, G.J.; Flitcroft, D.I.; Keegan, D.J. Electrophysiology-Guided Genetic Characterisation Maximises Molecular Diagnosis in an Irish Paediatric Inherited Retinal Degeneration Population. Genes 2022, 13, 615. https://doi.org/10.3390/genes13040615
Zhu J, Stephenson KAJ, Dockery A, Turner J, O’Byrne JJ, Fitzsimon S, Farrar GJ, Flitcroft DI, Keegan DJ. Electrophysiology-Guided Genetic Characterisation Maximises Molecular Diagnosis in an Irish Paediatric Inherited Retinal Degeneration Population. Genes. 2022; 13(4):615. https://doi.org/10.3390/genes13040615
Chicago/Turabian StyleZhu, Julia, Kirk A. J. Stephenson, Adrian Dockery, Jacqueline Turner, James J. O’Byrne, Susan Fitzsimon, G. Jane Farrar, D. Ian Flitcroft, and David J. Keegan. 2022. "Electrophysiology-Guided Genetic Characterisation Maximises Molecular Diagnosis in an Irish Paediatric Inherited Retinal Degeneration Population" Genes 13, no. 4: 615. https://doi.org/10.3390/genes13040615
APA StyleZhu, J., Stephenson, K. A. J., Dockery, A., Turner, J., O’Byrne, J. J., Fitzsimon, S., Farrar, G. J., Flitcroft, D. I., & Keegan, D. J. (2022). Electrophysiology-Guided Genetic Characterisation Maximises Molecular Diagnosis in an Irish Paediatric Inherited Retinal Degeneration Population. Genes, 13(4), 615. https://doi.org/10.3390/genes13040615