You are currently viewing a new version of our website. To view the old version click .
Genes
  • Review
  • Open Access

11 October 2021

Genes Associated with Disturbed Cerebral Neurogenesis in the Embryonic Brain of Mouse Models of Down Syndrome

Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
This article belongs to the Special Issue Models and Advances in Genetics of Down Syndrome

Abstract

Down syndrome (DS), also known as trisomy 21, is the most frequent genetic cause of intellectual disability. Although the mechanism remains unknown, delayed brain development is assumed to be involved in DS intellectual disability. Analyses with human with DS and mouse models have shown that defects in embryonic cortical neurogenesis may lead to delayed brain development. Cre-loxP-mediated chromosomal engineering has allowed the generation of a variety of mouse models carrying various partial Mmu16 segments. These mouse models are useful for determining genotype–phenotype correlations and identifying dosage-sensitive genes involved in the impaired neurogenesis. In this review, we summarize several candidate genes and pathways that have been linked to defective cortical neurogenesis in DS.

1. Introduction

Intellectual disability is characterized by impaired cognitive abilities, commonly defined by an intelligence quotient <70, and severe deficits in the capability to adapt to the environment and social milieu. Down syndrome (DS), caused by triplication of human chromosome 21 (Hsa21), is the most frequent genetic cause of intellectual disability. Accumulating evidence in DS individuals and DS mouse models indicates embryonic brain hypotrophy due to impaired cortical neurogenesis [1,2,3,4,5] and proliferation impairment [3,4]. Dendritic pathologies, such as a marked reduction in dendritic branching and spine density, are also reported in both DS individuals and DS mouse models [6,7]. These anomalies are thought to be key determinants for intellectual disability of DS.
According to the “gene dosage hypothesis” [8], any one of the over 400 overexpressed genes in Hsa21 [9] may contribute to the impaired neurogenesis and dendritic pathologies. Several candidate genes have recently been suggested.
In this review, we summarized the genes involved in embryonic brain hypotrophy.

2. Analyses of the Brains of People with DS

Although experiments with postmortem brains of human fetuses with DS have imparted very little information related to neurogenesis, immunostaining for Ki67, which is expressed in all phases of the cell cycle, demonstrated that the number of proliferating cells was markedly reduced in the embryonic hippocampus and cerebellum [4,10]. During the second trimester, reduced cellular proliferation and increased cell death result in fewer neurons in the neocortex, hippocampus, and cerebellum [4,10,11,12,13]. Fewer neurons in the ventricular zone (VZ) and subventricular zone (SVZ) suggest an underproduction of excitatory neurons, leading to an imbalance between excitatory and inhibitory neurons. Furthermore, fewer neurons and more astrocytes are found in the prenatal brain with DS, suggesting that the neural progenitor cells (NPCs) in DS show a greater shift towards glial lineages: differentiating into astrocytes, preferentially [4,13,14]. In the late gestation period, brains with DS show delayed and disorganized patterns of cortical lamination [15,16].
In addition to analyses with postmortem brains, experiments with NPCs from the fetal frontal cortex with DS also demonstrated delayed proliferation compared with those from the non-DS frontal cortex [17]. Human induced pluripotent stem cells (iPSCs) with trisomy 21 have been generated by multiple groups. Several studies have used iPSC models of DS to demonstrate defects in NPC proliferation [18], neurogenesis, the synaptic morphology/function, and the mitochondrial function [19]. Recently, an analysis of DS iPSC-derived cerebral organoids partially recapitulated the abnormalities observed in DS mouse models (see below) and postmortem DS brain samples, including a reduced proliferation rate and abnormal neurogenesis [20].
However, while postmortem studies have provided significant insights into the neuropathology of DS people, in vivo studies are necessary to understand the natural history of the human condition and how the pathology relates to neurodevelopmental outcomes. Recent advances in non-invasive imaging technologies, such as magnetic resonance imaging (MRI), have aided in our understanding of the in utero and neonatal brain development in DS [21]. In particular, advanced MRI techniques performed on living fetuses have provided an unprecedented opportunity to study the fetal brain development in cases of DS. Tarui et al. assessed the growth of fetal brains with DS using a regional volumetric analysis of fetal brain MRI, demonstrating decreased growth trajectories of the cortical plate, subcortical parenchyma, and cerebellar hemispheres in people with DS compared to controls [22].

3. Analyses of the Brains of Mouse Models for DS

Mouse models of DS are very useful for analyzing the DS pathophysiology in vivo. Since a large portion of Hsa21 shows synteny with the distal end of mouse chromosome 16 (Mmu16), mice carrying an extra copy of a part of Mmu16 have been generated as mouse models of DS (Figure 1).
Figure 1. Trisomic regions of mouse models for DS. A large portion of Hsa21 is syntenic with the distal end of Mmu16. The trisomic regions in several mouse models of DS are compared on the right of Mmu16. Ts65Dn and Ts1Cje mice (shown in black) were established by accidental translocation of Mmu16 segments on Mmu17 and Mmu12, respectively. Ts1Rhr mice were the first model involving the engineered duplication (Dp) of DSCR (shown in red). New engineered Dp models have been developed in the last decade, including the Yey series (shown in green), Yah series (shown in dark blue), and Tyb series (shown in purple) established by Drs. Eugene Yu, Victor L. J. Tybulewicz, and Yann Herault, respectively. Lipi: lipase, member I, Hspa13: heat shock protein 70 family, member 13, Eurl: C21orf91 or D16Ertd472e, Mrpl39: mitochondrial ribosomal protein L39, Jam2: junction adhesion molecule 2, App: amyloid precursor protein, Scaf4: SR-related CTD-associated factor 4, Hunk: hormonally upregulated Neu-associated kinase, Olig1/Olig2: oligodendrocyte transcription factor 1/2, Ifnar1: interferon (α and β) receptor 1, Runx1: runt-related transcription factor 1, Cbr1: carbonyl reductase 1, Dscr3: Down syndrome critical region gene 3, Dyrk1a: dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1a, Erg: ETS transcription factor related gene, B3Galt5: UDP-Gal:betaGlcNAc β 1,3-galactosyltransferase, polypeptide 5, Dscam: DS cell adhesion molecule, Mx2: MX dynamin-like GTPase 2, and Zbtb21: zinc finger and BTB domain containing 21.
Ts65Dn mice, which are the most well-characterized and widely used of these mice, were generated by irradiating the testes of male mice, breeding them, and screening the offspring for chromosomal rearrangements involving Mmu16 [23]. Ts65Dn mice carry an extra Mmu16 segment with roughly 90 genes syntenic to Hsa21 genes and exhibit a number of neural phenotypes affecting learning, memory, brain morphology, and synaptogenesis. Many of these effects parallel changes that are observed in individuals with DS [24]. Ts65Dn mice reportedly exhibit disturbed prenatal neurogenesis similar to that seen in individuals with DS [3]. Ts1Cje mice, which carry an unbalanced derivative—Ts(1216)1Cje—of a balanced translocation, were induced by gene-targeting in mouse ES cells [25]. Ts1Cje mice have an extra trisomic region coding approximately 70 genes from Scaf4 to Zbtb21 in Mmu16, which is shorter than that in Ts65Dn mice. The Ts1Cje mice also exhibit an impaired learning memory in the Morris water maze despite having a milder condition than Ts65Dn mice [26]. We and other groups demonstrated that the embryonic cortex of Ts1Cje mice is thinner than that of wild-type mice [5,27], and neurogenesis in the cerebral cortex was impaired in Ts1Cje embryos at embryonic day 14.5 (E14.5) [5,28]. Conversely, normal cortical neurogenesis in the Ts1Cje embryos at E15.5 and normal cognition of Ts1Cje adults in the Morris water maze test have been reported [29]. Recently, a Cre-loxP-based method to introduce defined chromosomal duplications into the Mmu16 was established, resulting in a number of mouse models being developed: Ts1Rhr, Yey series, Yah series, and Tyb series [30] (Figure 1). Although Dp(16)1Yey/+ (Dp16) mice carry an extra copy of the complete Hsa21 syntenic region on Mmu16 [31], Dp16 embryos reportedly show a normal brain size and normal cortical neurogenesis [32]. These observations suggest a possibility that the defects of prenatal neurogenesis might be caused by an extra chromatid (the amplified developmental instability hypothesis). This hypothesis is that most DS phenotypes are a result of a nongene-specific disturbance in chromosomal balance, leading to disrupted homeostasis [8]. However, it is true that some candidate genes that contribute to disturbed prenatal neurogenesis have been identified, suggesting the involvement of “gene dosage effects”, with most DS phenotypes affected at least in part by the overexpression of specific genes in Hsa21 in the impaired neurogenesis of the embryonic cortex of DS.

5. Conclusions and Perspectives

Accumulating evidence from human and mouse models indicates that prenatal neurogenesis for the formation of the cerebral cortex is impaired in DS, possibly resulting in delayed brain development. Several genes related to the impaired neurogenesis in DS have been identified through analyses with mouse models of DS. Of note, the relationships among these genes, except for Rcan1 and Dyrk1a, remain unclear. The relationships among the genes in the trisomic region, introduced here, are not clarifed in the disturbed prenatal neurogenesis, although further evidence will need to be collected in the future. For example, whether or not triplication of the Erg gene is solely sufficient to impair the cortical neurogenesis is unclear. Similarly, whether or not triplication of both Rcan1 and Dyrk1a genes is necessary to disturb the embryonic cortical neurogenesis is also unclear. Understanding the genetic relationships among the candidates introduced here may help explain the severity of cognitive impairment in DS mouse models. Since a number of mouse models—Dp(16)Yah, Dp(16)Yey, and Dp(16)Tyb mouse series—were established using modern methods of arranging chromosomes [30] (Figure 1), they may help clarify the genetic etiology of impaired neurogenesis in DS.

Funding

This study was supported in part by grants from Takeda Science Foundation (2016 to KI), the JSPS KAKENHI Grant Numbers 18K06940, the Vehicle Racing Commemorative Foundation (2017 to KI), and the Kyoto Pharmaceutical University Fund for the Promotion of Scientific Research (2013–2015 to KI).

Institutional Review Board Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Ross, M.H.; Galaburda, A.M.; Kemper, T.L. Down’s syndrome: Is there a decreased population of neurons? Neurology 1984, 34, 909–916. [Google Scholar] [CrossRef] [PubMed]
  2. Schmidt-Sidor, B.; Wisniewski, K.E.; Shepard, T.H.; Sersen, E.A. Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months. Clin. Neuropathol. 1990, 4, 181–190. [Google Scholar]
  3. Chakrabarti, L.; Galdzicki, Z.; Haydar, H.F. Defects in embryonic neurogenesis and initial synapse formation in the forebrain of the Ts65Dn mouse model of Down syndrome. J. Neurosci. 2007, 27, 11483–11495. [Google Scholar] [CrossRef]
  4. Guidi, S.; Bonasoni, P.; Ceccarelli, C.; Santini, D.; Gualtieri, F.; Ciani, E.; Bartesaghi, R. Neurogenesis impairment and increased cell death reduce total neuron number in the hippocampal region of fetuses with Down syndrome. Brain Pathol. 2008, 18, 180–197. [Google Scholar] [CrossRef]
  5. Ishihara, K.; Amano, K.; Takaki, E.; Shimohata, A.; Sago, H.; Epstein, C.J.; Yamakawa, K. Enlarged brain ventricles and impaired neurogenesis in the Ts1Cje and Ts2Cje mouse models of Down syndrome. Cereb. Cortex 2010, 20, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
  6. Takashima, S.; Becker, L.E.; Armstrong, D.L.; Chan, F. Abnormal neuronal development in the visual cortex of the human fetus and infant with down’s syndrome. A quantitative and qualitative Golgi study. Brain Res. 1981, 225, 1–21. [Google Scholar] [CrossRef]
  7. Uguagliati, B.; Al-Absi, A.R.; Stagni, F.; Emili, M.; Giacomini, A.; Guidi, S.; Nyengaard, J.R.; Bartesaghi, R. Early appearance of developmental alterations in the dendritic tree of the hippocampal granule cells in the Ts65Dn model of Down syndrome. Hippcampus 2021, 31, 435–447. [Google Scholar] [CrossRef] [PubMed]
  8. Pritchard, M.A.; Kola, I. The “gene dosage effect” hypothesis versus the “amplified developmental instability” hypothesis in Down syndrome. J. Neural. Transm. Suppl. 1999, 57, 293–303. [Google Scholar]
  9. Sturgeon, X.; Gardiner, K.J. Transcript catalogs of human chromosome 21 and orthologous chimpanzee and mouse regions. Mamm. Genome 2011, 22, 261–271. [Google Scholar] [CrossRef]
  10. Guidi, S.; Ciani, E.; Bonasoni, P.; Santini, D.; Bartesaghi, R. Widespread proliferation impairment and hypocellularity in the cerebellum of fetuses with Down syndrome. Brain Pathol. 2011, 21, 361–373. [Google Scholar] [CrossRef]
  11. Larsen, K.B.; Laursen, H.; Graem, N.; Samuelsen, G.B.; Bogdanovic, N.; Pakkenberg, B. Reduced cell number in the neocortical part of the human fetal brain in Down syndrome. Ann. Anat. 2008, 190, 421–427. [Google Scholar] [CrossRef] [PubMed]
  12. Guidi, S.; Giacomini, A.; Stagni, F.; Emili, M.; Uguagliati, B.; Bonasoni, M.P.; Bartesaghi, R. Abnormal development of the inferior temporal region in fetuses with Down syndrome. Brain Pathol. 2018, 28, 986–998. [Google Scholar] [CrossRef]
  13. Contestabile, A.; Fila, T.; Ceccarelli, C.; Bonasoni, P.; Bonapace, L.; Santini, D.; Bartesaghi, R.; Ciani, E. Cell cycle alteration and decreased cell proliferation in the hippocampal dentate gyrus and in the neocortical germinal matrix of fetuses with Down syndrome and in Ts65Dn mice. Hippocampus 2007, 17, 665–678. [Google Scholar] [CrossRef] [PubMed]
  14. Kanaumi, T.; Milenkovic, I.; Adle-Biassette, H.; Aronica, E.; Kovacs, G.G. Non-neuronal cell responses differ between normal and Down syndrome developing brains. Int. J. Dev. Neurosci. 2013, 31, 796–803. [Google Scholar] [CrossRef]
  15. Golden, J.A.; Hyman, B.T. Development of the superior temporal neocortex is anomalous in trisomy 21. J. Neuropathol. Exp. Neurol. 1994, 53, 513–520. [Google Scholar] [CrossRef]
  16. Engidawork, E.; Lubec, G. Molecular changes in fetal Down syndrome brain. J. Neurochem. 2003, 84, 895–904. [Google Scholar] [CrossRef]
  17. Lu, J.; Lian, G.; Zhou, H.; Esposito, G.; Steardo, L.; Delli-Bovi, L.C.; Hecht, J.L.; Lu, Q.R.; Sheen, V. OLIG2 over-expression impairs proliferation of human Down syndrome neural progenitors. Hum. Mol. Genet. 2012, 21, 2330–2340. [Google Scholar] [CrossRef]
  18. Hibaoui, Y.; Grad, I.; Letourneau, A.; Sailani, M.R.; Dahoun, S.; Santoni, F.A.; Gimelli, S.; Guipponi, M.; Pelte, M.F.; Bena, F.; et al. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol. Med. 2014, 6, 259–277. [Google Scholar] [CrossRef]
  19. Weick, J.P.; Held, D.L.; Bonadurer, G.F., 3rd; Doers, M.E.; Liu, Y.; Maguire, C.; Clark, A.; Knackert, J.A.; Molinarolo, K.; Musser, M.; et al. Deficits in human trisomy 21 iPSCs and neurons. Proc. Natl. Acad. Sci. USA 2013, 110, 9962–9967. [Google Scholar] [CrossRef]
  20. Tang, X.Y.; Xu, L.; Wang, J.; Hong, Y.; Wang, Y.; Zhu, Q.; Wang, D.; Zhang, X.Y.; Liu, C.Y.; Fang, K.H.; et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. J. Clin. Investig. 2021, 131, e135763. [Google Scholar] [CrossRef] [PubMed]
  21. Griffiths, P.D.; Bradburn, M.; Campbell, M.J.; Cooper, C.L.; Graham, R.; Jarvis, D.; Kilby, M.D.; Mason, G.; Mooney, C.; Robson, S.C.; et al. Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): A multicentre, prospective cohort study. Lancet 2017, 389, 538–546. [Google Scholar] [CrossRef]
  22. Tarui, T.; Im, K.; Madan, N.; Madankumar, R.; Skotko, B.G.; Schwartz, A.; Sharr, C.; Ralston, S.J.; Kitano, R.; Akiyama, S.; et al. Quantitative MRI analyses of regional brain growth in living fetuses with Down syndrome. Cereb. Cortex 2020, 30, 382–390. [Google Scholar] [CrossRef] [PubMed]
  23. Davisson, M.T.; Schmidt, C.; Akeson, E.C. Segmental trisomy of murine chromosome 16: A new model system for studying Down syndrome. In Molecular Genetics of Chromosome 21 and Down Syndrome; Patterson, D., Epstein, C.J., Eds.; Wiley-Liss: New York, NY, USA, 1990; pp. 263–280. [Google Scholar]
  24. Haydar, T.F.; Reeves, R.H. Trisomy and early brain development. Trends Neurosci. 2012, 35, 81–91. [Google Scholar] [CrossRef] [PubMed]
  25. Sago, H.; Carlson, E.J.; Smith, D.J.; Kilbridge, J.; Rubin, E.M.; Mobley, W.C.; Epstein, C.J.; Huang, T.T. Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc. Natl. Acad. Sci. USA 1998, 95, 6256–6261. [Google Scholar] [CrossRef]
  26. Sago, H.; Carlson, E.J.; Smith, D.J.; Rubin, E.M.; Crnic, L.S.; Huang, T.T.; Epstein, C.J. Genetic dissection of region associated with behavioral abnormalities in mouse models for Down syndrome. Pediatr. Res. 2000, 48, 606–613. [Google Scholar] [CrossRef]
  27. Nakano-Kobayashi, A.; Awaya, T.; Kii, I.; Sumida, Y.; Okuno, Y.; Yoshida, S.; Sumida, T.; Inoue, H.; Hosoya, T.; Hagiwara, M. Prenatal neurogenesis induction therapy normalizes brain structure and function in Down syndrome mice. Proc. Natl. Acad. Sci. USA 2017, 114, 10268–10273. [Google Scholar] [CrossRef]
  28. Kurabayashi, N.; Sanada, K. Increased dosage of DYRK1A and DSCR1 delays neuronal differentiation in neocortical progenitor cells. Genes Dev. 2013, 27, 2708–2721. [Google Scholar] [CrossRef]
  29. Aziz, N.M.; Guedj, F.; Pennings, J.L.A.; Olmos-Serrano, J.L.; Siegel, A.; Haydar, T.F.; Bianchi, D.W. Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome. Dis. Model. Mech. 2018, 11, dmm031013. [Google Scholar] [CrossRef]
  30. Herault, Y.; Delabar, J.M.; Fisher, E.M.C.; Tybulewicz, V.L.J.; Yu, E.; Brault, V. Rodent models in Down syndrome research: Impact and future opportunities. Dis. Model. Mech. 2017, 10, 1165–1186. [Google Scholar] [CrossRef]
  31. Li, Z.; Yu, T.; Morishima, M.; Pao, A.; LaDuca, J.; Conroy, J.; Nowak, N.; Matsui, S.; Shiraishi, I.; Yu, Y. Duplication of the entire 22.9-Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum. Mol. Genet. 2007, 16, 1359–1366. [Google Scholar] [CrossRef]
  32. Goodliffe, J.W.; Olmos-Serrano, J.L.; Aziz, N.M.; Pennings, J.L.A.; Guedj, F.; Bianchi, D.W.; Haydar, T.F. Absence of prenatal forebrain defects in the Dp(16)1Yey/+ mouse model of Down syndrome. J. Neurosci. 2016, 36, 2926–2944. [Google Scholar] [CrossRef]
  33. Guimera, J.; Casas, C.; Pucharcos, C.; Solans, A.; Domenech, A.; Planas, A.M.; Ashley, J.; Lovett, M.; Estivill, X.; Pritchard, M.A. A human homologue of drosophila minibrain (Mnb) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Hum. Mol. Genet. 1996, 5, 1305–1310. [Google Scholar] [CrossRef]
  34. Tejedor, F.J.; Hämmerle, B. MNB/DYRK1A as a multiple regulator of neuronal development. FEBS J. 2011, 278, 223–235. [Google Scholar] [CrossRef]
  35. Dehay, C.; Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 2007, 8, 438–450. [Google Scholar] [CrossRef]
  36. Gotz, M.; Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 2005, 6, 777–788. [Google Scholar] [CrossRef]
  37. Chen, J.-Y.; Lin, J.-R.; Tsai, F.-C.; Meyer, T. Dosage of Dyrk1a shifts cells within a p21-cyclin D1 signaling map to control the decision to enter the cell cycle. Mol. Cell 2013, 52, 87–100. [Google Scholar] [CrossRef]
  38. Najas, S.; Arranz, J.; Lochhead, P.A.; Ashford, A.L.; Oxley, D.; Delabar, J.M.; Cook, S.J.; Barallobre, M.J.; Arbones, M.L. DYRK1A-mediated Cyclin D1 degradation in neural stem cells contributes to the neurogenic cortical defects in Down syndrome. EBioMedicine 2015, 2, 120–134. [Google Scholar] [CrossRef] [PubMed]
  39. Arron, J.R.; Winslow, M.M.; Polleri, A.; Chang, C.P.; Wu, H.; Gao, X.; Neilson, J.R.; Chen, L.; Heit, J.J.; Kim, S.K.; et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 2006, 441, 595–600. [Google Scholar] [CrossRef] [PubMed]
  40. Sun, X.; Wu, Y.; Herculano, B.; Song, W. RCAN1 overexpression exacerbates calcium overloading-induced neuronal apoptosis. PLoS ONE 2014, 9, e95471. [Google Scholar]
  41. Khacho, M.; Clark, A.; Svoboda, D.S.; MacLaurin, J.G.; Lagace, D.C.; Park, D.S.; Slack, R.S. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum. Mol. Genet. 2017, 26, 3327–3341. [Google Scholar] [CrossRef]
  42. Khacho, M.; Harris, R.; Slack, R.S. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat. Rev. Neurosci. 2019, 20, 34–48. [Google Scholar] [CrossRef]
  43. Peiris, H.; Dubach, D.; Jessup, C.F.; Unterweger, P.; Raghupathi, R.; Muyderman, H.; Zanin, M.P.; Mackenzie, K.; Pritchard, M.A.; Keating, D.J. RCAN1 regulates mitochondrial function and increases susceptibility to oxidative stress in mammalian cells. Oxid. Med. Cell Longev. 2014, 2014, 520316. [Google Scholar] [CrossRef]
  44. Shukkur, E.A.; Shimohata, A.; Akagi, T.; Yu, W.; Yamaguchi, M.; Murayama, M.; Chui, D.; Takeuchi, T.; Amano, K.; Subramhanya, K.H.; et al. Mitochondrial dysfunction and tau hyperphosphorylation in Ts1Cje, a mouse model for down syndrome. Hum. Mol. Genet. 2006, 15, 2752–2762. [Google Scholar] [CrossRef] [PubMed]
  45. Trazzi, S.; Mitrugno, V.M.; Valli, E.; Fuchs, C.; Rizzi, S.; Guidi, S.; Perini, G.; Bartesaghi, R.; Ciani, E. APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome. Hum. Mol. Genet. 2011, 20, 1560–1573. [Google Scholar] [CrossRef] [PubMed]
  46. Zhang, W.; Thevapriya, S.; Kim, P.J.; Yu, W.-P.; Je, H.S.; Tan, E.K.; Zeng, L. Amyloid precursor protein regulates neurogenesis by antagonizing miR-574-5p in the developing cerebral cortex. Nat. Commun. 2014, 5, 3330. [Google Scholar] [CrossRef][Green Version]
  47. Chen, B.E.; Kondo, M.; Garnier, A.; Watson, F.L.; Puettmann-Holgado, R.; Lamar, D.R.; Schmucker, D. The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell 2006, 125, 607–620. [Google Scholar] [CrossRef]
  48. Fuerst, P.G.; Koizumi, A.; Masland, R.H.; Burgess, R.W. Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature 2008, 451, 470–474. [Google Scholar] [CrossRef] [PubMed]
  49. Fuerst, P.G.; Bruce, F.; Tian, M.; Wei, W.; Elstrott, J.; Feller, M.B.; Erskine, L.; Singer, J.H.; Burgess, R.W. DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron 2009, 64, 484–497. [Google Scholar] [CrossRef]
  50. Li, H.-L.; Huang, B.S.; Vishwasrao, H.; Sutedja, N.; Chen, W.; Jin, I.; Hawkins, R.D.; Bailey, C.H.; Kandel, E.R. Dscam mediates remodeling of glutamate receptors in aplysia during de novo and learning-related synapse formation. Neuron 2009, 61, 527–540. [Google Scholar] [CrossRef]
  51. Liu, G.; Li, W.; Wang, L.; Kar, A.; Guan, K.-L.; Rao, Y.; Wu, J.Y. DSCAM functions as a netrin receptor in commissural axon pathfinding. Proc. Natl. Acad. Sci. USA 2009, 106, 2951–2956. [Google Scholar] [CrossRef] [PubMed]
  52. Maynard, K.R.; Stein, E. DSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex. J. Neurosci. 2012, 32, 16637–16650. [Google Scholar] [CrossRef] [PubMed]
  53. Thiry, L.; Lemieux, M.D.; Laflamme, O.; Bretzner, F. Role of DSCAM in the evelopment of the spinal locomotor and sensorimotor circuits. J. Neurophysiol. 2016, 115, 1338–1354. [Google Scholar] [CrossRef] [PubMed]
  54. Laflamme, O.D.; Lemieux, M.; Thiry, L.; Bretzner, F. DSCAM mutation impairs motor cortex network dynamic and voluntary motor functions. Cereb. Cortex 2019, 29, 2313–2330. [Google Scholar] [CrossRef] [PubMed]
  55. Sachse, S.M.; Lievens, S.; Ribeiro, L.F.; Dascenco, D.; Masschaele, D.; Horré, K.; Misbaer, A.; Vanderroost, N.; De Smet, A.S.; Salta, E.; et al. Nuclear import of the DSCAM-cytoplasmic domain drives signaling capable of inhibiting synapse formation. EMBO J. 2019, 38, e99669. [Google Scholar] [CrossRef]
  56. Arimura, N.; Okada, M.; Taya, S.; Dewa, K.I.; Tsuzuki, A.; Uetake, H.; Miyashita, S.; Hashizume, K.; Shimaoka, K.; Egusa, S.; et al. SCAM regulates delamination of neurons in the developing midbrain. Sci. Adv. 2020, 6, eaba1693. [Google Scholar] [CrossRef]
  57. Zhang, L.; Huang, Y.; Chen, J.-Y.; Ding, Y.-Q.; Song, N.-N. DSCAM and DSCAML1 regulate the radial migration and callosal projection in developing cerebral cortex. Brain Res. 2015, 1594, 61–70. [Google Scholar] [CrossRef]
  58. Perez-Nunez, R.; Barraza, N.; Gonzalez-Jamett, A.; Cardenas, A.M.; Barnier, J.V.; Caviedes, P. Overexpressed Down Syndrome cell adhesion molecule (DSCAM) deregulates P21-activated Kinase (PAK) activity in an in vitro neuronal model of Down syndrome: Consequences on cell process formation and extension. Neurotox. Res. 2016, 30, 76–87. [Google Scholar] [CrossRef]
  59. Pan, X.; Chang, X.; Leung, C.; Zhou, Z.; Cao, F.; Xie, W.; Jia, Z. PAK1 regulates cortical development via promoting neuronal migration and progenitor cell proliferation. Mol. Brain 2015, 8, 36. [Google Scholar] [CrossRef]
  60. Lu, Q.R.; Sun, T.; Zhu, Z.; Ma, N.; Garcia, M.; Stiles, C.D.; Rowitch, D.H. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 2002, 109, 75–86. [Google Scholar] [CrossRef]
  61. Takebayashi, H.; Nabeshima, Y.; Yoshida, S.; Chisaka, O.; Ikenaka, K.; Nabeshima, Y. The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr. Biol. 2002, 12, 1157–1163. [Google Scholar] [CrossRef]
  62. Zhou, Q.; Anderson, D.J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 2002, 109, 61–73. [Google Scholar] [CrossRef]
  63. Takebayashi, H.; Yoshida, S.; Sugimori, M.; Kosako, H.; Kominami, R.; Nakafuku, M.; Nabeshima, Y. Dynamic expression of basic helix-loop-helix Olig family members: Implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech. Dev. 2000, 99, 143–148. [Google Scholar] [CrossRef]
  64. Ono, K.; Takebayashi, H.; Ikeda, K.; Furusho, M.; Nishizawa, T.; Watanabe, K.; Ikenaka, K. Regional-and temporal-dependent changes in the differentiation of Olig2 progenitors in the forebrain, and the impact on astrocyte development in the dorsal pallium. Dev. Biol. 2008, 320, 456–468. [Google Scholar] [CrossRef]
  65. Miyoshi, G.; Butt, S.J.; Takebayashi, H.; Fishell, G. Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J. Neurosci. 2007, 27, 7786–7798. [Google Scholar] [CrossRef]
  66. Chakrabarti, L.; Best, T.K.; Cramer, N.P.; Carney, R.S.E.; Isaac, J.T.R.; Galdzicki, Z.; Haydar, T.F. Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nat. Neurosci. 2010, 13, 927–934. [Google Scholar] [CrossRef]
  67. Ishihara, K.; Kanai, S.; Sago, H.; Yamakawa, K.; Akiba, S. Comparative proteomic profiling reveals aberrant cell proliferation in the brain of embryonic Ts1Cje, a mouse model of Down syndrome. Neuroscience 2014, 281, 1–15. [Google Scholar] [CrossRef]
  68. Liu, W.; Zhou, H.; Liu, L.; Zhao, C.; Deng, Y.; Chen, L. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region. Neurobiol. Dis. 2015, 77, 106–116. [Google Scholar] [CrossRef]
  69. Xu, R.; Brawner, A.T.; Li, S.; Liu, J.-J.; Kim, H.; Xue, H.; Pang, Z.P.; Ki, W.Y.; Hart, R.P.; Liu, Y.; et al. OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of down syndrome. Cell Stem Cell 2019, 24, 908–926. [Google Scholar] [CrossRef]
  70. Li, S.S.; Qu, Z.D.; Haas, M.; Ngo, L.; Heo, Y.J.; Kang, H.J.; Britto, J.M.; Cullen, H.D.; Vanyai, H.K.; Tan, S.S.; et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down syndrome. Sci. Rep. 2016, 6, 29514. [Google Scholar] [CrossRef]
  71. Ait Yahya-Graison, E.; Aubert, J.; Dauphinot, L.; Rivals, I.; Prieur, M.; Golfier, G.; Rossier, J.; Personnaz, L.; Creau, N.; Blehaut, H.; et al. Classification of human chromosome 21 gene-expression variations in Down syndrome: Impact on disease phenotypes. Am. J. Hum. Genet. 2007, 81, 475–491. [Google Scholar] [CrossRef] [PubMed]
  72. Prandini, P.; Deutsch, S.; Lyle, R.; Gagnebin, M.; Delucinge Vivier, C.; Delorenzi, M.; Gehrig, C.; Descombes, P.; Sherman, S.; Dagna Bricarelli, F.; et al. Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am. J. Hum. Genet. 2007, 81, 252–263. [Google Scholar] [CrossRef]
  73. Rost, I.; Fiegler, H.; Fauth, C.; Carr, P.; Bettecken, T.; Kraus, J.; Meyer, C.; Enders, A.; Wirtz, A.; Meitinger, T.; et al. Tetrasomy 21pter --> q21.2 in a male infant without typical Down’s syndrome dysmorphic features but moderate mental retardation. J. Med. Genet. 2004, 41, e26. [Google Scholar] [CrossRef] [PubMed][Green Version]
  74. Slavotinek, A.M.; Chen, X.N.; Jackson, A.; Gaunt, L.; Campbell, A.; Clayton-Smith, J.; Korenberg, J.R. Partial tetrasomy 21 in a male infant. J. Med. Genet. 2000, 37, E30. [Google Scholar] [CrossRef]
  75. Emery, B. Regulation of oligodendrocyte differentiation and myelination. Science 2010, 330, 779–782. [Google Scholar] [CrossRef] [PubMed]
  76. Reiche, L.; Gottle, P.; Lane, L.; Duek, P.; Park, M.; Azim, K.; Schutte, J.; Manousi, A.; Schira-Heinen, J.; Kury, P. C21orf91 Regulates Oligodendroglial Precursor Cell Fate-A Switch in the Glial Lineage? Front. Cell Neurosci. 2021, 16, 653075. [Google Scholar] [CrossRef] [PubMed]
  77. Ishihara, K.; Shimizu, R.; Takata, K.; Kawashita, E.; Amano, K.; Shimohata, A.; Low, D.; Nabe, T.; Sago, H.; Alexander, W.S.; et al. Perturbation of the immune cells and prenatal neurogenesis by the triplication of the Erg gene in mouse models of Down syndrome. Brain Pathol. 2020, 30, 75–91. [Google Scholar] [CrossRef]
  78. Loughran, S.J.; Kruse, E.A.; Hacking, D.F.; de Graaf, C.A.; Hyland, C.D.; Willson, T.A.; Henley, K.J.; Ellis, S.; Voss, A.K.; Metcalf, D.; et al. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat. Immunol. 2008, 9, 810–819. [Google Scholar] [CrossRef] [PubMed]
  79. Kruse, E.A.; Loughran, S.J.; Baldwin, T.M.; Josefsson, E.C.; Ellis, S.; Watson, D.K.; Nurden, P.; Metcalf, D.; Hilton, D.J.; Alexander, W.S.; et al. Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. Proc. Natl. Acad. Sci. USA 2009, 106, 13814–13819. [Google Scholar] [CrossRef] [PubMed]
  80. Birdsey, G.M.; Dryden, N.H.; Amsellem, V.; Gebhardt, F.; Sahnan, K.; Haskard, D.O.; Dejana, E.; Mason, J.C.; Randi, A.M. Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood 2008, 111, 3498–3506. [Google Scholar] [CrossRef]
  81. Birdsey, G.M.; Dryden, N.H.; Shah, A.V.; Hannah, R.; Hall, M.D.; Haskard, D.O.; Parsons, M.; Mason, J.C.; Zvelebil, M.; Gottgens, B.; et al. The transcription factor Erg regulates expression of histone deacetylase 6 and multiple pathways involved in endothelial cell migration and angiogenesis. Blood 2012, 119, 894–903. [Google Scholar] [CrossRef]
  82. Sperone, A.; Dryden, N.H.; Birdsey, G.M.; Madden, L.; Johns, M.; Evans, P.C.; Mason, J.C.; Haskard, D.O.; Boyle, J.J.; Paleolog, E.M.; et al. The transcription factor Erg inhibits vascular inflammation by repressing NF-kappaB activation and proinflammatory gene expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 142–150. [Google Scholar] [CrossRef] [PubMed]
  83. Marteau, L.; Pacary, E.; Valable, S.; Bernaudin, M.; Guillemot, F.; Petit, E. Angiopoietin-2 regulates cortical neurogenesis in the developing telencephalon. Cereb. Cortex 2011, 21, 1695–1702. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.