AML with Myelodysplasia-Related Changes: Development, Challenges, and Treatment Advances
Abstract
:1. Introduction
2. Definition and Diagnostic Features of AML-MRC
3. Leukemic Transformation of MDS to AML
4. Challenges in Treatment for AML-MRC Patients
4.1. Advanced Age
4.2. Prior Treatment History
5. Pediatric AML-MRC
6. Treatment Options for AML-MRC Patients
6.1. Liposomal Daunorubicin–Cytarabine (CPX-351)
6.2. Hypomethylating Agents (HMAs)
6.2.1. Azacitidine
6.2.2. Decitabine
6.2.3. Venetoclax
6.3. Allogenic Hematopoietic Stem Cell Transplant (alloHSCT)
7. Future Directions
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sanz, M.A.; Iacoboni, G.; Montesinos, P.; Venditti, A. Emerging strategies for the treatment of older patients with acute myeloid leukemia. Ann. Hematol. 2016, 95, 1583–1593. [Google Scholar] [CrossRef] [PubMed]
- Acute Myeloid Leukemia—Cancer Stat Facts. In SEER. Available online: http://seer.cancer.gov/statfacts/html/amyl.html (accessed on 25 May 2020).
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- SEER Hematopoietic and Lymphoid Neoplasm Database. In SEER. Available online: http://seer.cancer.gov/seertools/hemelymph/51f6cf58e3e27c3994bd53ae/ (accessed on 11 June 2020).
- Vardiman, J.W.; Thiele, J.; Arber, D.A.; Brunning, R.D.; Borowitz, M.J.; Porwit, A.; Harris, N.L.; Le Beau, M.M.; Hellström-Lindberg, E.; Tefferi, A.; et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 2009, 114, 937–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Østgård, L.S.G.; Nørgaard, J.M.; Sengeløv, H.; Severinsen, M.; Friis, L.S.; Marcher, C.W.; Dufva, I.H.; Nørgaard, M. Comorbidity and performance status in acute myeloid leukemia patients: A nation-wide population-based cohort study. Leukemia 2015, 29, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Falini, B.; Macijewski, K.; Weiss, T.; Bacher, U.; Schnittger, S.; Kern, W.; Kohlmann, A.; Klein, H.U.; Vignetti, M.; Piciocchi, A.; et al. Multilineage dysplasia has no impact on biologic, clinicopathologic, and prognostic features of AML with mutated nucleophosmin (NPM1). Blood 2010, 115, 3776–3786. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Beyá, M.; Rozman, M.; Pratcorona, M.; Torrebadell, M.; Camós, M.; Aguilar, J.L.; Esteve, J. The prognostic value of multilineage dysplasia in de novo acute myeloid leukemia patients with intermediate-risk cytogenetics is dependent on NPM1 mutational status. Blood 2010, 116, 6147–6148. [Google Scholar] [CrossRef]
- Bacher, U.; Schnittger, S.; Macijewski, K.; Grossmann, V.; Kohlmann, A.; Alpermann, T.; Kowarsch, A.; Nadarajah, N.; Kern, W.; Haferlach, C.; et al. Multilineage dysplasia does not influence prognosis in CEBPA-mutated AML, supporting the WHO proposal to classify these patients as a unique entity. Blood 2012, 119, 4719–4722. [Google Scholar] [CrossRef]
- Haferlach, C.; Mecucci, C.; Schnittger, S.; Kohlmann, A.; Mancini, M.; Cuneo, A.; Testoni, N.; Rege-Cambrin, G.; Santucci, A.; Vignetti, M.; et al. AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood 2009, 114, 3024–3032. [Google Scholar] [CrossRef] [Green Version]
- Schlenk, R.F.; Taskesen, E.; van Norden, Y.; Krauter, J.; Ganser, A.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Corbacioglu, A.; Göhring, G.; et al. The value of allogeneic and autologous hematopoietic stem cell transplantation in prognostically favorable acute myeloid leukemia with double mutant CEBPA. Blood 2013, 122, 1576–1582. [Google Scholar] [CrossRef]
- Baer, C.; Walter, W.; Stengel, A.; Hutter, S.; Meggendorfer, M.; Kern, W.; Haferlach, C.; Haferlach, T. Molecular Classification of AML-MRC Reveals a Distinct Profile and Identifies MRC-like Patients with Poor Overall Survival. Blood 2019, 134, 2735. [Google Scholar] [CrossRef]
- Porwit, A.; Saft, L. The AML–MDS interface—Leukemic transformation in myelodysplastic syndromes. J. Hematop. 2011, 4, 69–79. [Google Scholar] [CrossRef]
- Jiang, Y.; Dunbar, A.; Gondek, L.P.; Mohan, S.; Rataul, M.; O’Keefe, C.; Sekeres, M.; Saunthararajah, Y.; Maciejewski, J.P. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 2009, 113, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.E.; Mufti, G.J.; Rasool, F.; Mijovic, A.; Devereux, S.; Pagliuca, A. The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 2000, 96, 3932–3938. [Google Scholar] [CrossRef]
- Nolte, F.; Hofmann, W.-K. Molecular mechanisms involved in the progression of myelodysplastic syndrome. Future Oncol. 2010, 6, 445-455–455. [Google Scholar] [CrossRef] [PubMed]
- Rocquain, J.; Carbuccia, N.; Trouplin, V.; Raynaud, S.; Murati, A.; Nezri, M.; Tadrist, Z.; Olschwang, S.; Vey, N.; Birnbaum, D.; et al. Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer 2010, 10, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Kao, Y.-R.; Sun, D.; Todorova, T.I.; Reynolds, D.; Narayanagari, S.-R.; Montagna, C.; Will, B.; Verma, A.K.; Steidl, U.; et al. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat. Med. 2018, 25, 103–110. [Google Scholar] [CrossRef]
- Hulegårdh, E.; Nilsson, C.; Lazarevic, V.; Garelius, H.; Antunovic, P.; Rangert, D.Å.; Möllgård, L.; Uggla, B.; Wennström, L.; Wahlin, A.; et al. Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: A report from the Swedish Acute Leukemia Registry. Am. J. Hematol. 2015, 90, 208–214. [Google Scholar] [CrossRef]
- Szotkowski, T.; Rohon, P.; Zapletalova, L.; Sicova, K.; Hubacek, J.; Indrak, K. Secondary acute myeloid leukemia—A single center experience. Neoplasma 2010, 57, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients with Newly Diagnosed Secondary Acute Myeloid Leukemia. J. Clin. Oncol. 2018, 36, 2684–2692. [Google Scholar] [CrossRef]
- Montalban-Bravo, G.; Kanagal-Shamanna, R.; Class, C.A.; Sasaki, K.; Ravandi, F.; Cortes, J.E.; Daver, N.; Takahashi, K.; Short, N.J.; Dinardo, C.D.; et al. Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am. J. Hematol. 2020, 95, 612–622. [Google Scholar] [CrossRef]
- Lancet, J.E.; Cortes, J.E.; Hogge, D.E.; Tallman, M.S.; Kovacsovics, T.J.; Damon, L.E.; Komrokji, R.; Solomon, S.R.; Kolitz, J.E.; Cooper, M.; et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood 2014, 123, 3239–3246. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.F.; Döhner, H.; Butrym, A.; Wierzbowska, A.; Selleslag, D.; Jang, J.H.; Kumar, R.; Cavenagh, J.D.; Schuh, A.C.; Candoni, A.; et al. Azacitidine improves clinical outcomes in older patients with acute myeloid leukaemia with myelodysplasia-related changes compared with conventional care regimens. BMC Cancer 2017, 17, 852. [Google Scholar] [CrossRef] [PubMed]
- Dinardo, C.D.; Pratz, K.; Pullarkat, V.; Jonas, B.; Arellano, M.; Becker, P.S.; Frankfurt, O.; Konopleva, M.; Wei, A.H.; Kantarjian, H.M.; et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2019, 133, 7–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, J.; Arthur, C.; Delaunay, J.; Mazur, G.; Thomas, X.; Wierzbowska, A.; Ravandi, F.; Berrak, E.; Jones, M.; Li, Y.; et al. Multivariate and subgroup analyses of a randomized, multinational, phase 3 trial of decitabine vs treatment choice of supportive care or cytarabine in older patients with newly diagnosed acute myeloid leukemia and poor- or intermediate-risk cytogenetics. BMC Cancer 2014, 14, 69. [Google Scholar] [CrossRef]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Østgård, L.S.G.; Medeiros, B.C.; Sengelov, H.; Nørgaard, M.; Andersen, M.K.; Dufva, I.H.; Friis, L.S.; Kjeldsen, E.; Marcher, C.W.; Preiss, B.; et al. Epidemiology and Clinical Significance of Secondary and Therapy-Related Acute Myeloid Leukemia: A National Population-Based Cohort Study. J. Clin. Oncol. 2015, 33, 3641–3649. [Google Scholar] [CrossRef]
- Juliusson, G.; Antunovic, P.; Derolf, Å.; Lehmann, S.; Möllgård, L.; Stockelberg, D.; Tidefelt, U.; Wahlin, A.; Hoglund, M. Age and acute myeloid leukemia: Real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 2009, 113, 4179–4187. [Google Scholar] [CrossRef] [Green Version]
- Nagel, G.; Weber, D.; Fromm, E.; Erhardt, S.; Lübbert, M.; Fiedler, W.; Kindler, T.; Krauter, J.; Brossart, P.; Kündgen, A.; et al. Epidemiological, genetic, and clinical characterization by age of newly diagnosed acute myeloid leukemia based on an academic population-based registry study (AMLSG BiO). Ann. Hematol. 2017, 96, 1993–2003. [Google Scholar] [CrossRef] [Green Version]
- Talati, C.; Dhulipala, V.C.; Extermann, M.T.; Al Ali, N.; Kim, J.; Komrokji, R.; Sweet, K.; Kuykendall, A.; Sehovic, M.; Reljic, T.; et al. Comparisons of commonly used front-line regimens on survival outcomes in patients aged 70 years and older with acute myeloid leukemia. Haematologica 2019, 105, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Kayser, S.; Döhner, K.; Krauter, J.; Köhne, C.-H.; Horst, H.A.; Held, G.; Von Lilienfeld-Toal, M.; Wilhelm, S.; Kündgen, A.; Götze, K.; et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood 2011, 117, 2137–2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Bueso-Ramos, C.; Dinardo, C.; Estecio, M.R.; Davanlou, M.; Geng, Q.-R.; Fang, Z.; Nguyen, M.; Pierce, S.; Wei, Y.; et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 2013, 28, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, A.; Miyachi, H.; Matsushita, H.; Yabe, M.; Taki, T.; Watanabe, T.; Saito, A.M.; Tomizawa, D.; Taga, T.; Takahashi, H.; et al. Acute myeloid leukaemia with myelodysplastic features in children: A report of Japanese Paediatric Leukaemia/Lymphoma Study Group. Br. J. Haematol. 2014, 167, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manola, K.N.; Panitsas, F.; Polychronopoulou, S.; Daraki, A.; Karakosta, M.; Stavropoulou, C.; Avgerinou, G.; Hatzipantelis, E.; Pantelias, G.; Sambani, C.; et al. Cytogenetic abnormalities and monosomal karyotypes in children and adolescents with acute myeloid leukemia: Correlations with clinical characteristics and outcome. Cancer Genet. 2013, 206, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Krauss, A.C.; Gao, X.; Li, L.; Manning, M.L.; Patel, P.; Fu, W.; Janoria, K.G.; Gieser, G.; Bateman, D.A.; Przepiorka, N.; et al. FDA Approval Summary: (Daunorubicin and Cytarabine) Liposome for Injection for the Treatment of Adults with High-Risk Acute Myeloid Leukemia. Clin. Cancer Res. 2018, 25, 2685–2690. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.H.; Newell, L.F.; Ritchie, E.K.; Strickland, S.A.; Hogge, D.E.; Solomon, S.R.; Schiller, G.J.; Wieduwilt, M.J.; Ryan, R.J.; Faderl, S.; et al. Outcomes in Patients with Acute Myeloid Leukemia with Myelodysplasia-Related Changes (AML-MRC) Who Achieved Remission with CPX-351 Versus 7 + 3: Phase 3 Exploratory Analysis. Biol. Blood Marrow Transplant. 2020, 26, S9–S10. [Google Scholar] [CrossRef]
- Przespolewski, A.C.; Talati, C.; Fazal, S.; Vachhani, P.; Sanikommu, S.; Thota, S.; Baron, J.; Griffiths, E.A.; Thompson, J.E.; Sweet, K.L. Safety and efficacy of CPX-351 in younger patients <60 years old with secondary acute myeloid leukemia: An updated analysis. J. Clin. Oncol. 2019, 37, e18530. [Google Scholar] [CrossRef]
- Dombret, H.; Seymour, J.F.; Butrym, A.; Wierzbowska, A.; Selleslag, D.; Jang, J.H.; Kumar, R.; Cavenagh, J.; Schuh, A.C.; Candoni, A.; et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood 2015, 126, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Kantarjian, H.M.; Thomas, X.G.; Dmoszynska, A.; Wierzbowska, A.; Mazur, G.; Mayer, J.; Gau, J.-P.; Chou, W.-C.; Buckstein, R.; Cermak, J.; et al. Multicenter, Randomized, Open-Label, Phase III Trial of Decitabine Versus Patient Choice, With Physician Advice, of Either Supportive Care or Low-Dose Cytarabine for the Treatment of Older Patients with Newly Diagnosed Acute Myeloid Leukemia. J. Clin. Oncol. 2012, 30, 2670–2677. [Google Scholar] [CrossRef] [Green Version]
- Blum, W.; Garzon, R.; Klisovic, R.B.; Schwind, S.; Walker, A.; Geyer, S.; Liu, S.; Havelange, V.; Becker, H.; Schaaf, L.; et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc. Natl. Acad. Sci. USA 2010, 107, 7473–7478. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.; Vincelette, N.D.; Abraham, I.; Robertson, K.D.; Fernandez-Zapico, M.E.; Patnaik, M.M. Targeting epigenetic pathways in acute myeloid leukemia and myelodysplastic syndrome: A systematic review of hypomethylating agents trials. Clin. Epigenetics 2016, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration Website. VENCLEXTA (Venetoclax) [Package Insert]. Available online: https://www-accessdata-fda-gov/drugsatfda_docs/label/2016/208573s000lbl.pdf (accessed on 12 June 2020).
- Huemer, F.; Melchardt, T.; Jansko, B.; Wahida, A.; Jilg, S.; Jost, P.J.; Klieser, E.; Steiger, K.; Magnes, T.; Pleyer, L.; et al. Durable remissions with venetoclax monotherapy in secondary AML refractory to hypomethylating agents and high expression of BCL-2 and/or BIM. Eur. J. Haematol. 2019, 102, 437–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikegawa, S.; Doki, N.; Kurosawa, S.; Yamaguchi, T.; Sakaguchi, M.; Harada, K.; Yamamoto, K.; Hino, Y.; Shingai, N.; Senoo, Y.; et al. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) overcomes poor prognosis of acute myeloid leukemia with myelodysplasia-related changes (AML-MRC). Leuk. Lymphoma 2016, 57, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Ichiki, T.; Okabe, M.; Kawaguchi, Y.; Ohbiki, M.; Osaki, M.; Goto, M.; Sato, T.; Araie, H.; Goto, T.; et al. Myeloid Leukemia with Myelodysplasia-Related Changes Was Not a Prognostic Factor Under Allogenic Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2019, 25, S117. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration Website. SYNRIBO (Omacetaxine Mepesuccinate). [Package Insert]. Available online: https://www-accessdata-fda-gov/drugsatfda_docs/label/2012/203585lbl.pdf (accessed on 12 June 2020).
- National Cancer Institute. NCI Drug Dictionary: Pevonedistat. Available online: https://www-cancer-gov.proxy.lib.ohio-state.edu/publications/dictionaries/cancer-drug/def/pevonedistat (accessed on 8 May 2020).
- Yates, J.W.; Wallace, H.J., Jr.; Ellison, R.R.; Holland, J.F. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother. Rep. 1973, 57, 485–488. [Google Scholar] [PubMed]
- U.S. Food and Drug Administration Website. Azacitdine [Package Insert]. Available online: https://www-accessdata-fda-gov/drugsatfda_docs/label/2018/208216s001lbl.pdf (accessed on 8 May 2020).
- U.S. Food and Drug Administration website. DACOGEN (Decitabine) [Package Insert]. Available online: https://www-accessdata-fda-gov/drugsatfda_docs/label/2018/021790s021lbl.pdf (accessed on 8 May 2020).
- Thomas, E.D.; Lochte, H.L.; Lu, W.C.; Ferrebee, J.W. Intravenous Infusion of Bone Marrow in Patients Receiving Radiation and Chemotherapy. N. Engl. J. Med. 1957, 257, 491–496. [Google Scholar] [CrossRef] [PubMed]
Complex Karyotype-3 or More Abnormalities Balanced Translocations |
---|
t(5; 10)(q32; q21.2) |
t(3; 5)(q25.3; q35.1) |
t(5; 17)(q32; p13.2) |
t(5; 7)(q32; q11.2) |
t(5; 12)(q32; p13.2) |
t(2; 11)(p21; q23.3) |
t(1; 3)(p36.3; q21.2) |
t(3; 21)(q26.2; q22.1) |
t(11; 16)(q23.3; p13.3) |
Unbalanced Translocations |
del(12p)/t(12p) |
idic(X)(q13) |
del(11q) |
−13/del(13q) |
i(17q)/t(17p) |
del(5q)/t(5q) |
−7/del(7q) |
Current Treatment Options for Patients with AML-MRC | ||
---|---|---|
Treatment | Year FDA Approved for AML | Outcomes in AML-MRC Patients |
Approved with a specific indication for AML-MRC patients | ||
Liposomal daunorubicin-cytarabine | 2017 | CR/CRi rate 48% mOS* 19.15 months |
Approved for AML but not with a specific indication for AML-MRC patients | ||
Standard 7 + 3 | First reported in 1973 [49] | CR/CRi rate 33% mOS 11.58 months |
Hypomethylating agents (HMAs) | ||
Azacitidine | 2004 (MDS; no specific FDA approval for AML) [50] | CR/CRi rate 24.8% mOS 8.9 months |
Decitabine | 2006 (MDS; no specific FDA approval for AML) [51] | CR/CRi rate 74% No specific OS analysis |
Venetoclax combinations | ||
Venetoclax with HMA | 2018 | CR/CRi rate 67% (note: only secondary AML patients analyzed) |
Venetoclax with low-dose cytarabine | 2018 | No specific analysis in AML-MRC group |
Allogeneic stem cell transplant | First reported in 1957 [52] | Similar to patients without AML-MRC |
Ongoing Clinical Trials for Patients with AML-MRC ^ | ||
Study Title | Trial Details | NCT Number |
CPX-351 for the Treatment of Secondary Acute Myeloid Leukemia in Patients Younger Than 60 Years Old | Phase 2 Newly diagnosed Includes AML-MRC, secondary AML, t-AML patients | NCT04269213 |
CPX-351 and Glasdegib for Newly Diagnosed Acute Myelogenous Leukemia With MDS Related Changes or Therapy-related Acute Myeloid Leukemia | Phase 2 Newly diagnosed Includes AML-MRC and t-AML patients | NCT04231851 |
A Study of Azacitidine for Patients With Int/High -Risk MDS and AML-MRC | Phase 3 Includes intermediate- and high-risk MDS patients and AML-MRC patients with less than 30% blasts | NCT03978364 |
Pevonedistat, Cytarabine, and Idarubicin in Treating Patients With Acute Myeloid Leukemia | Phase 1b/2 Newly diagnosed Includes AML-MRC and t-AML patients | NCT03330821 |
Integrating Geriatric Assessment and Genetic Profiling to Personalize Therapy Selection in Older Adults With Acute Myeloid Leukemia | Phase 2 Newly diagnosed Age ≥60 Includes de novo AML, secondary AML, t-AML, other AML equivalent such as myeloid sarcoma, MDS in transformation to AML, or high-grade treatment-related myeloid neoplasm | NCT03226418 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koenig, K.L.; Sahasrabudhe, K.D.; Sigmund, A.M.; Bhatnagar, B. AML with Myelodysplasia-Related Changes: Development, Challenges, and Treatment Advances. Genes 2020, 11, 845. https://doi.org/10.3390/genes11080845
Koenig KL, Sahasrabudhe KD, Sigmund AM, Bhatnagar B. AML with Myelodysplasia-Related Changes: Development, Challenges, and Treatment Advances. Genes. 2020; 11(8):845. https://doi.org/10.3390/genes11080845
Chicago/Turabian StyleKoenig, Kristin L., Kieran D. Sahasrabudhe, Audrey M. Sigmund, and Bhavana Bhatnagar. 2020. "AML with Myelodysplasia-Related Changes: Development, Challenges, and Treatment Advances" Genes 11, no. 8: 845. https://doi.org/10.3390/genes11080845
APA StyleKoenig, K. L., Sahasrabudhe, K. D., Sigmund, A. M., & Bhatnagar, B. (2020). AML with Myelodysplasia-Related Changes: Development, Challenges, and Treatment Advances. Genes, 11(8), 845. https://doi.org/10.3390/genes11080845