HnRNP Pathologies in Frontotemporal Lobar Degeneration
Abstract
:1. Frontotemporal Dementia and Frontotemporal Lobar Degeneration
2. Heterogeneous Nuclear Ribonucleoproteins
2.1. HnRNP A1 and A2B1
2.2. HnRNP A3
2.3. HnRNP C and D
2.4. HnRNP E2
2.5. HnRNP F and H1
2.6. HnRNP G
2.7. HnRNP I and L
2.8. HnRNP K
2.9. HnRNP Q and R
2.10. HnRNP U
3. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bang, J.; Spina, S.; Miller, B.L. Frontotemporal dementia. Lancet 2015, 386, 1672–1682. [Google Scholar] [CrossRef]
- Bott, N.T.; Radke, A.; Stephens, M.; Kramer, J.H. Frontotemporal dementia: Diagnosis, deficits and management. Neurodegener. Dis. Manag. 2014, 4, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Young, J.J.; Lavakumar, M.; Tampi, D.; Balachandran, S.; Tampi, R.R. Frontotemporal dementia: Latest evidence and clinical implications. Ther. Adv. Psychopharmacol. 2018, 8, 33–48. [Google Scholar] [CrossRef]
- Convery, R.; Mead, S.; Rohrer, J.D. Review: Clinical, genetic and neuroimaging features of frontotemporal dementia. Neuropathol. Appl. Neurobiol. 2019, 45, 6–18. [Google Scholar] [CrossRef]
- Neary, D.; Snowden, J.; Mann, D. Frontotemporal dementia. Lancet Neurol. 2005, 4, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Boeve, B.F.; Boxer, A.; Kumfor, F.; Pijnenburg, Y.; Rohrer, J.D. Advances and controversies in frontotemporal dementia: Diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol. 2022, 21, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.M.; Saxon, J.; Jones, M.; Snowden, J.; Thompson, J.C. Neuropsychological differentiation of progressive aphasic disorders. J. Neuropsychol. 2019, 13, 214–239. [Google Scholar] [CrossRef]
- Gorno-Tempini, M.L.; Hillis, A.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.; Ogar, J.; Rohrer, J.; Black, S.; Boeve, B.F. Classification of primary progressive aphasia and its variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef]
- Burrell, J.R.; Kiernan, M.; Vucic, S.; Hodges, J.R. Motor neuron dysfunction in frontotemporal dementia. Brain 2011, 134 Pt 9, 2582–2594. [Google Scholar] [CrossRef]
- Saxon, J.A.; Harris, J.; Thompson, J.; Jones, M.; Richardson, A.; Langheinrich, T.; Neary, D.; Mann, D.; Snowden, J.S. Semantic dementia, progressive non-fluent aphasia and their association with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 711–712. [Google Scholar] [CrossRef]
- Lashley, T.; Rohrer, J.; Mead, S.; Revesz, T. Review: An update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol. Appl. Neurobiol. 2015, 41, 858–881. [Google Scholar] [CrossRef]
- Pottier, C.; Ravenscroft, T.; Sanchez-Contreras, M.; Rademakers, R. Genetics of FTLD: Overview and what else we can expect from genetic studies. J. Neurochem. 2016, 138, 32–53. [Google Scholar] [CrossRef]
- Dejesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Flynn, H.; Adamson, J. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011, 72, 245–256. [Google Scholar] [CrossRef]
- Gijselinck, I.; Van Langenhove, T.; van der Zee, J.; Sleegers, K.; Philtjens, S.; Kleinberger, G.; Janssens, J.; Bettens, K.; Van Cauwenberghe, C.; Pereson, S.; et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: A gene identification study. Lancet Neurol. 2012, 11, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Renton, A.E.; Majounie, E.; Waite, A.; Simon-Sanchez, J.; Rollinson, S.; Gibbs, J.; Schymick, J.; Laaksovirta, H.; van Swieten, J.; Myllykangas, L.; et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011, 72, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Van Der Zee, J.; Gijselinck, I.; Dillen, L.; Van Langenhove, T.; Theuns, J.; Engelborghs, S.; Philtjens, S.; Vandenbulcke, M.; Sleegers, K.; Sieben, A.; et al. A Pan-European Study of the C9orf72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Hum. Mutat. 2013, 34, 363–373. [Google Scholar] [CrossRef]
- Zhu, Q.; Jiang, J.; Gendron, T.; McAlonis-Downes, M.; Jiang, L.; Taylor, A.; Garcia, S.D.; Dastidar, S.G.; Rodriguez, M.; King, P.; et al. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat. Neurosci. 2020, 23, 615–624. [Google Scholar] [CrossRef]
- Balendra, R.; Isaacs, A.M. C9orf72-mediated ALS and FTD: Multiple pathways to disease. Nat. Rev. Neurol. 2018, 14, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Lashley, T.; Rohrer, J.; Bandopadhyay, R.; Fry, C.; Ahmed, Z.; Isaacs, A.; Brelstaff, J.; Borroni, B.; Warren, J.; Troakes, C.; et al. A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. Brain 2011, 134 Pt 9, 2548–2564. [Google Scholar] [CrossRef]
- Lee, E.B.; Porta, S.; Baer, G.M.; Xu, Y.; Suh, E.; Kwong, L.; Elman, L.; Grossman, M.; Lee, V.; Irwin, D.; et al. Trojanowski Expansion of the classification of FTLD-TDP: Distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol. 2017, 134, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Bampton, A.; Gittings, L.; Fratta, P.; Lashley, T.; Gatt, A. The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol. 2020, 140, 599–623. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.B.; Lee, V.; Trojanowski, J.Q. Gains or losses: Molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 2012, 13, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Scaber, J.; Talbot, K. What is the role of TDP-43 in C9orf72-related amyotrophic lateral sclerosis and frontemporal dementia? Brain 2016, 139 Pt 12, 3057–3059. [Google Scholar] [CrossRef]
- Klim, J.R.; Williams, L.; Limone, F.; Juan, I.G.S.; Davis-Dusenbery, B.; Mordes, D.; Burberry, A.; Steinbaugh, M.; Gamage, K.; Kirchner, R.; et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat. Neurosci. 2019, 22, 167–179. [Google Scholar] [CrossRef]
- Melamed, Z.E.; López-Erauskin, J.; Baughn, M.; Zhang, O.; Drenner, K.; Sun, Y.; Freyermuth, F.; McMahon, M.; Beccari, M.; Artates, J.; et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat. Neurosci. 2019, 22, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.-L.; Wilkins, O.; Keuss, M.; Hill, S.; Zanovello, M.; Lee, W.; Bampton, A.; Lee, F.; Masino, L.; Qi, Y.; et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 2022, 603, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.R.; Prudencio, M.; Koike, Y.; Vatsavayai, S.; Kim, G.; Harbinski, F.; Briner, A.; Rodriguez, C.; Guo, C.; Akiyama, T.; et al. TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A. Nature 2022, 603, 124–130. [Google Scholar] [CrossRef]
- Ling, J.P.; Chhabra, R.; Merran, J.; Schaughency, P.; Wheelan, S.; Corden, J.; Wong, P. PTBP1 and PTBP2 Repress Nonconserved Cryptic Exons. Cell Rep. 2016, 17, 104–113. [Google Scholar] [CrossRef]
- McClory, S.P.; Lynch, K.; Ling, J.P. HnRNP L represses cryptic exons. RNA 2018, 24, 761–768. [Google Scholar] [CrossRef]
- West, K.O.; Scott, H.; Torres-Odio, S.; West, A.; Patrick, K.; Watson, R. The Splicing Factor hnRNP M Is a Critical Regulator of Innate Immune Gene Expression in Macrophages. Cell Rep. 2019, 29, 1594–1609.e5. [Google Scholar] [CrossRef] [PubMed]
- Zarnack, K.; Konig, J.; Tajnik, M.; Martincorena, I.; Eustermann, S.; Stevant, I.; Reyes, A.; Anders, S.; Luscombe, N.; Ule, J. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 2013, 152, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Bampton, A.; Gatt, A.; Humphrey, J.; Cappelli, S.; Bhattacharya, D.; Foti, S.; Brown, A.; Asi, Y.; Low, Y.; Foiani, M.; et al. HnRNP K mislocalisation is a novel protein pathology of frontotemporal lobar degeneration and ageing and leads to cryptic splicing. Acta Neuropathol. 2021, 142, 609–627. [Google Scholar] [CrossRef]
- Dreyfuss, G.; Kim, V.; Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 2002, 3, 195–205. [Google Scholar] [CrossRef]
- Dreyfuss, G.; Matunis, M.; Pinol-Roma, S.; Burd, C. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 1993, 62, 289–321. [Google Scholar] [CrossRef] [PubMed]
- Calabretta, S.; Richard, S. Emerging Roles of Disordered Sequences in RNA-Binding Proteins. Trends. Biochem. Sci. 2015, 40, 662–672. [Google Scholar] [CrossRef]
- Hofweber, M.; Dormann, D. Friend or foe-Post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 2019, 294, 7137–7150. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, N.; Wang, Y.; Scarborough, E.; Moore, J.; Diaz, Z.; MacLea, K.; Freibaum, B.; Li, S.; Molliex, A.; et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013, 495, 467–473. [Google Scholar] [CrossRef]
- Nakielny, S.; Dreyfuss, G. The hnRNP C proteins contain a nuclear retention sequence that can override nuclear export signals. J. Cell Biol. 1996, 134, 1365–1373. [Google Scholar] [CrossRef]
- Michael, W.M.; Eder, P.; Dreyfuss, G. The K nuclear shuttling domain: A novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J. 1997, 16, 3587–3598. [Google Scholar] [CrossRef] [PubMed]
- Rossbach, O.; Hung, L.; Schreiner, S.; Grishina, I.; Heiner, M.; Hui, J.; Bindereif, A. Auto- and cross-regulation of the hnRNP L proteins by alternative splicing. Mol. Cell. Biol. 2009, 29, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Wollerton, M.C.; Gooding, C.; Wagner, E.; Garcia-Blanco, M.; Smith, C. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 2004, 13, 91–100. [Google Scholar] [CrossRef]
- Peccarelli, M.; Kebaara, B. Regulation of natural mRNAs by the nonsense-mediated mRNA decay pathway. Eukaryot. Cell 2014, 13, 1126–1135. [Google Scholar] [CrossRef]
- Lin, Y.; Protter, D.; Rosen, M.; Parker, R. Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol. Cell 2015, 60, 208–219. [Google Scholar] [CrossRef]
- Buratti, E.; Brindisi, A.; Giombi, M.; Tisminetzky, S.; Ayala, Y.; Baralle, F. TDP-43 Binds Heterogeneous Nuclear Ribonucleoprotein A/B through Its C-terminal Tail. J. Biol. Chem. 2005, 280, 37572–37584. [Google Scholar] [CrossRef]
- Geuens, T.; Bouhy, D.; Timmerman, V. The hnRNP family: Insights into their role in health and disease. Human Genetics 2016, 135, 851–867. [Google Scholar] [CrossRef]
- Gami-Patel, P.; Bandopadhyay, R.; Brelstaff, J.; Revesz, T.; Lashley, T. The presence of heterogeneous nuclear ribonucleoproteins in frontotemporal lobar degeneration with FUS-positive inclusions. Neurobiol. Aging 2016, 46, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Deshaies, J.E.; Shkreta, L.; Moszczynski, A.; Sidibe, H.; Semmler, S.; Fouillen, A.; Bennett, E.; Bekenstein, U.; Destroismaisons, L.; Toutant, J.; et al. TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis. Brain 2018, 141, 1320–1333. [Google Scholar] [CrossRef]
- Duan, Y.; Du, A.; Gu, J.; Duan, G.; Wang, C.; Gui, X.; Ma, Z.; Qian, B.; Deng, X.; Zhang, K.; et al. PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Res. 2019, 29, 233–247. [Google Scholar] [CrossRef]
- Mori, K.; Lammich, S.; Mackenzie, I.; Forné, I.; Zilow, S.; Kretzschmar, H.; Edbauer, D.; Janssens, J.; Kleinberger, G.; Cruts, M.; et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol. 2013, 125, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Nihei, Y.; Arzberger, T.; Zhou, Q.; Mackenzie, I.; Hermann, A.; Hanisch, F.; Lobar, D.G.C.F.; Banking, A.B.B.; Kamp, F.; et al. Reduced hnRNPA3 increases C9orf72 repeat RNA levels and dipeptide-repeat protein deposition. EMBO Rep. 2016, 17, 1314–1325. [Google Scholar] [CrossRef] [PubMed]
- Davidson, Y.S.; Robinson, A.; Flood, L.; Rollinson, S.; Benson, B.; Asi, Y.; Richardson, A.; Jones, M.; Snowden, J.; Pickering-Brown, S.; et al. Heterogeneous ribonuclear protein E2 (hnRNP E2) is associated with TDP-43-immunoreactive neurites in Semantic Dementia but not with other TDP-43 pathological subtypes of Frontotemporal Lobar Degeneration. Acta Neuropathol. Commun. 2017, 5, 54. [Google Scholar] [CrossRef]
- Kattuah, W.; Rogelj, B.; King, A.; Shaw, C.; Hortobagyi, T.; Troakes, C. Heterogeneous Nuclear Ribonucleoprotein E2 (hnRNP E2) Is a Component of TDP-43 Aggregates Specifically in the A and C Pathological Subtypes of Frontotemporal Lobar Degeneration. Front. Neurosci. 2019, 13, 551. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.B.; Chen, H.; Peres, J.; Gomez-Deza, J.; Attig, J.; Stalekar, M.; Troakes, C.; Nishimura, A.; Scotter, E.; Vance, C.; et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 2013, 5, 1178–1186. [Google Scholar] [CrossRef]
- Conlon, E.G.; Fagegaltier, D.; Agius, P.; Davis-Porada, J.; Gregory, J.; Hubbard, I.; Kang, K.; Kim, D.; Phatnani, H.; Kwan, J.; et al. Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism. eLife 2018, 7, e37754. [Google Scholar] [CrossRef] [PubMed]
- Tollervey, J.R.; Wang, Z.; Hortobágyi, T.; Witten, J.; Zarnack, K.; Kayikci, M.; Clark, T.; Schweitzer, A.; Rot, G.; Curk, T.; et al. Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res. 2011, 21, 1572–1582. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, R.; Gatt, A.; Fratta, P.; Lashley, T.; Bampton, A. HnRNP K mislocalisation in neurons of the dentate nucleus is a novel neuropathological feature of neurodegenerative disease and ageing. Neuropathol. Appl. Neurobiol. 2022, 48, e12793. [Google Scholar] [CrossRef]
- Braems, E.; Bercier, V.; Van Schoor, E.; Heeren, K.; Beckers, J.; Fumagalli, L.; Dedeene, L.; Moisse, M.; Geudens, I.; Hersmus, N.; et al. HNRNPK alleviates RNA toxicity by counteracting DNA damage in C9orf72 ALS. Acta Neuropathol 2022, 144, 465–488. [Google Scholar] [CrossRef]
- Gittings, L.M.; Foti, S.; Benson, B.; Gami-Patel, P.; Isaacs, A.; Lashley, T. Heterogeneous nuclear ribonucleoproteins R and Q accumulate in pathological inclusions in FTLD-FUS. Acta Neuropathol. Commun. 2019, 7, 18. [Google Scholar] [CrossRef]
- Blokhuis, A.M.; Koppers, M.; Groen, E.; van den Heuvel, D.; Modigliani, S.D.; Anink, J.; Fumoto, K.; van Diggelen, F.; Snelting, A.; Sodaar, P.; et al. Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathol. 2016, 132, 175–196. [Google Scholar] [CrossRef]
- Freibaum, B.D.; Chitta, R.; High, A.; Taylor, J. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J. Proteome Res. 2010, 9, 1104–1120. [Google Scholar] [CrossRef]
- Ling, S.C.; Albuquerque, C.; Han, J.; Lagier-Tourenne, C.; Tokunaga, S.; Zhou, H.; Cleveland, D. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc. Natl. Acad. Sci. USA 2010, 107, 13318–13323. [Google Scholar] [CrossRef]
- Gilpin, K.M.; Chang, L.; Monteiro, M. ALS-linked mutations in ubiquilin-2 or hnRNPA1 reduce interaction between ubiquilin-2 and hnRNPA1. Hum. Mol. Genet. 2015, 24, 2565–2577. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Shibagaki, Y.; Hattori, S.; Matsuoka, M. Nuclear TDP-43 causes neuronal toxicity by escaping from the inhibitory regulation by hnRNPs. Hum. Mol. Genet. 2015, 24, 1513–1527. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Donkervoort, S.; Dec, E.; Badadani, M.; Katheria, V.; Rana, P.; Nguyen, C.; Mukherjee, J.; Caiozzo, V.; Martin, B.; et al. The Multiple Faces of Valosin-Containing Protein-Associated Diseases: Inclusion Body Myopathy with Paget’s Disease of Bone Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis. J. Mol. Neurosci. 2011, 45, 522–531. [Google Scholar] [CrossRef]
- Molliex, A.; Temirov, J.; Lee, J.; Coughlin, M.; Kanagaraj, A.; Kim, H.; Mittag, T.; Taylor, J. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 2015, 163, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Purice, M.D.; Taylor, J. Linking hnRNP Function to ALS and FTD Pathology. Front. Neurosci. 2018, 12, 326. [Google Scholar] [CrossRef]
- Salapa, H.E.; Hutchinson, C.; Popescu, B.; Levin, M. Neuronal RNA-binding protein dysfunction in multiple sclerosis cortex. Ann. Clin. Transl. Neurol. 2020, 7, 1214–1224. [Google Scholar] [CrossRef]
- Ryan, V.H.; Dignon, G.; Zerze, G.; Chabata, C.; Silva, R.; Conicella, A.; Amaya, J.; Burke, K.; Mittal, J.; Fawzi, N. Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation. Mol. Cell 2018, 69, 465–479.e7. [Google Scholar] [CrossRef]
- Kato, M.; Han, T.W.; Xie, S.; Shi, K.; Du, X.; Wu, L.C.; Mirzaei, H.; Goldsmith, E.J.; Longgood, J.; Pei, J.; et al. Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels. Cell 2012, 149, 753–767. [Google Scholar] [CrossRef]
- Davidson, Y.S.; Flood, L.; Robinson, A.; Nihei, Y.; Mori, K.; Rollinson, S.; Richardson, A.; Benson, B.; Jones, M.; Snowden, J.; et al. Heterogeneous ribonuclear protein A3 (hnRNP A3) is present in dipeptide repeat protein containing inclusions in Frontotemporal Lobar Degeneration and Motor Neurone disease associated with expansions in C9orf72 gene. Acta Neuropathol. Commun. 2017, 5, 31. [Google Scholar] [CrossRef]
- Al-Sarraj, S.; King, A.; Troakes, C.; Smith, B.; Maekawa, S.; Bodi, I.; Rogelj, B.; Al-Chalabi, A.; Hortobágyi, T.; Shaw, C. p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol. 2011, 122, 691–702. [Google Scholar] [CrossRef]
- Cienikova, Z.; Jayne, S.; Damberger, F.; Allain, F.; Maris, C. Evidence for cooperative tandem binding of hnRNP C RRMs in mRNA processing. RNA 2015, 21, 1931–1942. [Google Scholar] [CrossRef] [PubMed]
- Attig, J.; de Los Mozos, I.R.; Haberman, N.; Wang, Z.; Emmett, W.; Zarnack, K.; Konig, J.; Ule, J. Splicing repression allows the gradual emergence of new Alu-exons in primate evolution. Elife 2016, 5, e19545. [Google Scholar] [CrossRef]
- Humphrey, J.; Emmett, W.; Fratta, P.; Isaacs, A.; Plagnol, V. Quantitative analysis of cryptic splicing associated with TDP-43 depletion. BMC Med. Genom. 2017, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Barreau, C.; Paillard, L.; Osborne, H. AU-rich elements and associated factors: Are there unifying principles? Nucleic Acids Res. 2005, 33, 7138–7150. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Xu, N.; Shyu, A. mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: Different deadenylation kinetics and uncoupling from translation. Mol. Cell. Biol. 1995, 15, 5777–5788. [Google Scholar] [CrossRef]
- Kemmerer, K.; Fischer, S.; Weigand, J. Auto- and cross-regulation of the hnRNPs D and DL. RNA 2018, 24, 324–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honore, B.; Rasmussen, H.; Vorum, H.; Dejgaard, K.; Liu, X.; Gromov, P.; Madsen, P.; Gesser, B.; Tommerup, N.; Celis, J. Heterogeneous nuclear ribonucleoproteins H, H’, F are members of a ubiquitously expressed subfamily of related but distinct proteins encoded by genes mapping to different chromosomes. J. Biol. Chem. 1995, 270, 28780–28789. [Google Scholar]
- Nazim, M.; Masuda, A.; Rahman, M.; Nasrin, F.; Takeda, J.; Ohe, K.; Ohkawara, B.; Ito, M.; Ohno, K. Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms. Nucleic Acids Res. 2017, 45, 1455–1468. [Google Scholar] [CrossRef]
- Venables, J.P.; Koh, C.; Froehlich, U.; Lapointe, E.; Couture, S.; Inkel, L.; Bramard, A.; Paquet, E.; Watier, V.; Durand, M.; et al. Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol. Cell. Biol. 2008, 28, 6033–6043. [Google Scholar] [CrossRef]
- Suzuki, H.; Shibagaki, Y.; Hattori, S.; Matsuoka, M. C9-ALS/FTD-linked proline-arginine dipeptide repeat protein associates with paraspeckle components and increases paraspeckle formation. Cell Death Dis. 2019, 10, 746. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Q.; Wang, Y.; Lafyatis, R.; Stamm, S.; Andreadis, A. Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors. J. Neurochem. 2004, 88, 1078–1090. [Google Scholar] [CrossRef] [PubMed]
- Mikolaskova, B.; Jurcik, M.; Cipakova, I.; Kretova, M.; Chovanec, M.; Cipak, L. Maintenance of genome stability: The unifying role of interconnections between the DNA damage response and RNA-processing pathways. Curr. Genet. 2018, 64, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Naro, C.; Bielli, P.; Pagliarini, V.; Sette, C. The interplay between DNA damage response and RNA processing: The unexpected role of splicing factors as gatekeepers of genome stability. Front. Genet. 2015, 6, 142. [Google Scholar] [CrossRef] [PubMed]
- Adamson, B.; Smogorzewska, A.; Sigoillot, F.; King, R.; Elledge, S. A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat. Cell Biol. 2012, 14, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.J.; DeMaria, C.; Sun, Y.; Wilson, G.; Brewer, G. Structure and genomic organization of the human AUF1 gene: Alternative pre-mRNA splicing generates four protein isoforms. Genomics 1998, 48, 195–202. [Google Scholar] [CrossRef]
- Lamichhane, R.; Daubner, G.; Thomas-Crusells, J.; Auweter, S.; Manatschal, C.; Austin, K.; Valniuk, O.; Allain, F.; Rueda, D. RNA looping by PTB: Evidence using FRET and NMR spectroscopy for a role in splicing repression. Proc. Natl. Acad. Sci. USA 2010, 107, 4105–4110. [Google Scholar] [CrossRef]
- Ghetti, A.; Pinol-Roma, S.; Michael, W.; Morandi, C.; Dreyfuss, G. hnRNP I, the polypyrimidine tract-binding protein: Distinct nuclear localization and association with hnRNAs. Nucleic Acids Res. 1992, 20, 3671–3678. [Google Scholar] [CrossRef]
- Hahm, B.; Cho, O.; Kim, J.; Kim, Y.; Kim, J.; Oh, Y.; Jang, S. Polypyrimidine tract-binding protein interacts with HnRNP L. FEBS Lett. 1998, 425, 401–406. [Google Scholar] [CrossRef]
- Hung, L.H.; Heiner, M.; Hui, J.; Schreiner, S.; Benes, V.; Bindereif, A. Diverse roles of hnRNP L in mammalian mRNA processing: A combined microarray and RNAi analysis. RNA 2008, 14, 284–296. [Google Scholar] [CrossRef]
- Trabzuni, D.; Ryten, M.; Walker, R.; Smith, C.; Imran, S.; Ramasamy, A.; Weale, M.; Hardy, J. Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. J. Neurochem. 2011, 119, 275–282. [Google Scholar] [CrossRef]
- Trabzuni, D.; Wray, S.; Vandrovcova, J.; Ramasamy, A.; Walker, R.; Smith, C.; Luk, C.; Gibbs, J.; Dillman, A.; Hernandez, D.; et al. MAPT expression and splicing is differentially regulated by brain region: Relation to genotype and implication for tauopathies. Hum. Mol. Genet. 2012, 21, 4094–4103. [Google Scholar] [CrossRef] [PubMed]
- Bomsztyk, K.; Denisenko, O.; Ostrowski, J. hnRNP K: One protein multiple processes. BioEssays 2004, 26, 629–638. [Google Scholar] [CrossRef]
- Barboro, P.; Ferrari, N.; Balbi, C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett. 2014, 352, 152–159. [Google Scholar] [CrossRef]
- Carpenter, B.; McKay, M.; Dundas, S.; Lawrie, L.; Telfer, C.; Murray, G. Heterogeneous nuclear ribonucleoprotein K is over expressed, aberrantly localised and is associated with poor prognosis in colorectal cancer. Br. J. Cancer 2006, 95, 921–927. [Google Scholar] [CrossRef]
- Chen, X.; Gu, P.; Xie, R.; Han, J.; Liu, H.; Wang, B.; Xie, W.; Xie, W.; Zhong, G.; Chen, C.; et al. Heterogeneous nuclear ribonucleoprotein K is associated with poor prognosis and regulates proliferation and apoptosis in bladder cancer. J. Cell. Mol. Med. 2017, 21, 1266–1279. [Google Scholar] [CrossRef]
- Hornbaker, M.J.; Gallardo, M.; Zhang, X.; Ma, H.; Hu, P.; Khoury, J.; Kornblau, S.; Bueso-Ramos, C.; Post, S. hnRNP K Overexpression Drives AML Progression by Altering Pathways Critical for Myeloid Proliferation and Differentiation. Blood 2016, 128, 744. [Google Scholar] [CrossRef]
- Liu, Y.; Szaro, B.G. hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis. Development 2011, 138, 3079–3090. [Google Scholar] [CrossRef] [PubMed]
- Laursen, L.S.; Chan, C.; Ffrench-Constant, C. Translation of myelin basic protein mRNA in oligodendrocytes is regulated by integrin activation and hnRNP-K. J. Cell Biol. 2011, 192, 797–811. [Google Scholar] [CrossRef]
- Folci, A.; Mapelli, L.; Sassone, J.; Prestori, F.; D’Angelo, E.; Bassani, S.; Passafaro, M. Loss of hnRNP K impairs synaptic plasticity in hippocampal neurons. J. Neurosci. 2014, 34, 9088–9095. [Google Scholar] [CrossRef]
- Fukuda, T.; Naiki, T.; Saito, M.; Irie, K. hnRNP K interacts with RNA binding motif protein 42 and functions in the maintenance of cellular ATP level during stress conditions. Genes. Cells 2009, 14, 113–128. [Google Scholar] [CrossRef] [PubMed]
- D’Angiolella, V.; Donato, V.; Forrester, F.; Jeong, Y.; Pellacani, C.; Kudo, Y.; Saraf, A.; Florens, L.; Washburn, M.; Pagano, M. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 2012, 149, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Mourelatos, Z.; Abel, L.; Yong, J.; Kataoka, N.; Dreyfuss, G. SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J. 2001, 20, 5443–5452. [Google Scholar] [CrossRef]
- Reches, A.; Nachmani, D.; Berhani, O.; Duev-Cohen, A.; Shreibman, D.; Ophir, Y.; Seliger, B.; Mandelboim, O. HNRNPR Regulates the Expression of Classical and Nonclassical MHC Class I Proteins. J. Immunol. 2016, 196, 4967–4976. [Google Scholar] [CrossRef]
- Kiledjian, M.; Dreyfuss, G. Primary structure and binding activity of the hnRNP U protein: Binding RNA through RGG box. EMBO J. 1992, 11, 2655–2664. [Google Scholar] [CrossRef]
- Hegde, M.L.; Banerjee, S.; Hegde, P.; Bellot, L.; Hazra, T.; Boldogh, I.; Mitra, S. Enhancement of NEIL1 protein-initiated oxidized DNA base excision repair by heterogeneous nuclear ribonucleoprotein U (hnRNP-U) via direct interaction. J. Biol. Chem. 2012, 287, 34202–34211. [Google Scholar] [CrossRef]
- Xiao, R.; Tang, P.; Yang, B.; Huang, J.; Zhou, Y.; Shao, C.; Li, H.; Sun, H.; Zhang, Y.; Fu, X. Nuclear matrix factor hnRNP U/SAF-A exerts a global control of alternative splicing by regulating U2 snRNP maturation. Mol. Cell 2012, 45, 656–668. [Google Scholar] [CrossRef]
- El-Brolosy, M.A.; Stainier, D.Y.R. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet. 2017, 13, e1006780. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M.; Lee, E.; Mackenzie, I.R. Frontotemporal Lobar Degeneration TDP-43-Immunoreactive Pathological Subtypes: Clinical and Mechanistic Significance; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 201–217. [Google Scholar]
- Fu, H.; Hardy, J.; Duff, K. Selective vulnerability in neurodegenerative diseases. Nat. Neurosci. 2018, 21, 1350–1358. [Google Scholar] [CrossRef]
- Gautam, M.; Jara, J.; Kocak, N.; Rylaarsdam, L.; Kim, K.; Bigio, E.; Özdinler, P.H. Mitochondria, ER, and nuclear membrane defects reveal early mechanisms for upper motor neuron vulnerability with respect to TDP-43 pathology. Acta Neuropathol. 2019, 137, 47–69. [Google Scholar] [CrossRef] [PubMed]
- Nana, A.L.; Sidhu, M.; Gaus, S.; Hwang, J.-H.; Li, L.; Park, Y.; Kim, E.-J.; Pasquini, L.; Allen, I.; Rankin, K.; et al. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol. 2019, 137, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Pineda, S.S.; Lee, H.; Fitzwalter, B.; Mohammadi, S.; Pregent, L.; Gardashli, M.; Mantero, J.; Engelberg-Cook, E.; Dejesus-Hernandez, M.; Van Blitterswijk, M.; et al. Single-cell profiling of the human primary motor cortex in ALS and FTLD. bioRxiv 2021. [Google Scholar] [CrossRef]
- Guerra San Juan, I.; Nash, L.; Smith, K.; Leyton-Jaimes, M.; Qian, M.; Klim, J.; Limone, F.; Dorr, A.; Couto, A.; Pintacuda, G.; et al. Loss of mouse Stmn2 function causes motor neuropathy. Neuron 2022, 110, 1671–1688.e6. [Google Scholar] [CrossRef]
- Willemse, S.W.; Roes, K.; Van Damme, P.; Hardiman, O.; Ingre, C.; Povedano, M.; Wray, N.; Gijzen, M.; de Pagter, M.; Demaegd, K.; et al. Lithium carbonate in amyotrophic lateral sclerosis patients homozygous for the C-allele at SNP rs12608932 in UNC13A: Protocol for a confirmatory, randomized, group-sequential, event-driven, double-blind, placebo-controlled trial. Trials 2022, 23, 978. [Google Scholar] [CrossRef] [PubMed]
Name | Other Names | Amino Acid Length | RNA Recognition Domains | DNA-Binding Domains | Nuclear Localisation/ Transport Domains | Current Representative Pathological Findings Related to FTLD |
---|---|---|---|---|---|---|
hnRNP A1 | 372 | 2 RRMs, 1 RGG box | 1 M9 |
| ||
hnRNP A2B1 | 353 | 2 RRMs | 1 M9, 1 NLS |
| ||
hnRNP A3 | 378 | 2 RRMs |
| |||
hnRNP C | 306 | 1 RRM | 1 NLS |
| ||
hnRNP D | AUF1, LaAUF1, JKT41-binding protein | 355 | 2 RRMs |
| ||
hnRNP E2 | PCBP2, Alpha-CP2 | 365 | 3 KHs |
| ||
HnRNP F | nucleolin-like protein mcs94-1 | 415 | 3 RRMs |
| ||
hnRNP G | RNA-binding motif protein, X chromosome (RBMX), Glycoprotein p43 | 391 | 1 RRM, 1 unspecified domain | 1 NLS | ||
HnRNP H1 | 449 | 3 RRMs |
| |||
hnRNP I | PTB, PPTB-1 | 531 | 4 RRMs | |||
hnRNP K | TUNP | 463 | 3 KHs, 1 KI (containing 5 RRG boxes) |
| ||
hnRNP L | SRRF | 589 | 4 RRMs |
| ||
hnRNP Q | SYNCRIP, CRY-RBP, NS1-associated protein | 623 | 3 RRMs | 1 NLS |
| |
hnRNP R | 633 | 3 RRMs, 1 RRG box | 1 NLS |
| ||
hnRNP U | GRIP120, SAF-A, nuclear p120 ribonucleoprotein | 825 | 1 RRG box | 1 SAP |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Gatt, A.; Lashley, T. HnRNP Pathologies in Frontotemporal Lobar Degeneration. Cells 2023, 12, 1633. https://doi.org/10.3390/cells12121633
Jiang X, Gatt A, Lashley T. HnRNP Pathologies in Frontotemporal Lobar Degeneration. Cells. 2023; 12(12):1633. https://doi.org/10.3390/cells12121633
Chicago/Turabian StyleJiang, Xinwa, Ariana Gatt, and Tammaryn Lashley. 2023. "HnRNP Pathologies in Frontotemporal Lobar Degeneration" Cells 12, no. 12: 1633. https://doi.org/10.3390/cells12121633
APA StyleJiang, X., Gatt, A., & Lashley, T. (2023). HnRNP Pathologies in Frontotemporal Lobar Degeneration. Cells, 12(12), 1633. https://doi.org/10.3390/cells12121633