The p38/MK2 Pathway Functions as Chk1-Backup Downstream of ATM/ATR in G2-Checkpoint Activation in Cells Exposed to Ionizing Radiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Inhibitors
2.3. Irradiation
2.4. Two Parametric Flow Cytometry Analysis of Mitotic Index Using Propidium Iodide (PI) and H3-pS10 Staining
2.5. Three Parametric Flow Cytometry Analysis of Mitotic Index Using PI, EdU, and H3-pS10 Staining
2.6. SDS-PAGE and Western Blot Analysis
3. Results
3.1. Chk1 Inhibition Only Partially Suppresses G2-Checkpoint at Low IR Doses
3.2. Chk1 Is Neither Assisted Nor Backed-Up by Chk2 in the Regulation of the G2-Checkpoint
3.3. The p38/MK2 Pathway Regulates the G2-Checkpoint, but Only When Chk1 Is Inhibited
3.4. Upstream Kinases Involved in the Activation of the p38a/MK2 Pathway
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature 2009, 461, 1071–1078. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ciccia, A.; Elledge, S.J. The DNA Damage Response: Making It Safe to Play with Knives. Mol. Cell 2010, 40, 179–204. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alt, F.W.; Zhang, Y.; Meng, F.-L.; Guo, C.; Schwer, B. Mechanisms of Programmed DNA Lesions and Genomic Instability in the Immune System. Cell 2013, 152, 417–429. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Blackford, A.N.; Jackson, S.P. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol. Cell 2017, 66, 801–817. [Google Scholar] [CrossRef][Green Version]
- Shiloh, Y.; Ziv, Y. The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 2013, 14, 197–210. [Google Scholar] [CrossRef]
- Iliakis, G.; Wang, Y.; Guan, J.; Wang, H. DNA Damage Checkpoint Control in Cells Exposed to Ionizing Radiation. Oncogene 2003, 22, 5834–5847. [Google Scholar] [CrossRef][Green Version]
- Furnari, B.; Rhind, N.; Russell, P. Cdc25 Mitotic Inducer Targeted by Chk1 DNA Damage Checkpoint Kinase. Science 1997, 277, 1495–1497. [Google Scholar] [CrossRef]
- Giles, N.; Forrest, A.; Gabrielli, B. 14-3-3 Acts as an Intramolecular Bridge to Regulate cdc25B Localization and Activity. J. Biol. Chem. 2003, 278, 28580–28587. [Google Scholar] [CrossRef][Green Version]
- Kumagai, A.; Dunphy, W.G. Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev. 1999, 13, 1067–1072. [Google Scholar] [CrossRef][Green Version]
- Peng, C.-Y.; Graves, P.R.; Thoma, R.S.; Wu, Z.; Shaw, A.S.; Piwnica-Worms, H. Mitotic and G2 Checkpoint Control: Regulation of 14-3-3 Protein Binding by Phosphorylation of Cdc25c on Serine-216. Science 1997, 277, 1501–1505. [Google Scholar] [CrossRef]
- Mailand, N.; Podtelejnikov, A.V.; Groth, A.; Mann, M.; Bartek, J.; Lukas, J. Regulation of G2/M Events by Cdc25a through Phosphorylation-Dependent Modulation of Its Stability. EMBO J. 2002, 21, 5911–5920. [Google Scholar] [CrossRef]
- Chen, M.-S.; Hurov, J.; White, L.S.; Woodford-Thomas, T.; Piwnica-Worms, H. Absence of Apparent Phenotype in Mice Lacking Cdc25C Protein Phosphatase. Mol. Cell. Biol. 2001, 21, 3853–3861. [Google Scholar] [CrossRef][Green Version]
- Mladenov, E.; Fan, X.; Paul-Konietzko, K.; Soni, A.; Iliakis, G. DNA-Pkcs and Atm Epistatically Suppress DNA End Resection and Hyperactivation of Atr-Dependent G2-Checkpoint in S-Phase Irradiated Cells. Sci. Rep. 2019, 9, 14597. [Google Scholar] [CrossRef][Green Version]
- Mladenov, E.; Fan, X.; Dueva, R.; Soni, A.; Iliakis, G. Radiation-dose-dependent functional synergisms between ATM, ATR and DNA-PKcs in checkpoint control and resection in G2-phase. Sci. Rep. 2019, 9, 8255. [Google Scholar] [CrossRef][Green Version]
- Xiao, H.; Li, F.; Mladenov, E.; Soni, A.; Mladenova, V.; Pan, B.; Dueva, R.; Stuschke, M.; Timmermann, B.; Iliakis, G. Increased Resection at DSBs in G2-Phase Is a Unique Phenotype Associated with DNA-PKcs Defects That Is Not Shared by Other Factors of c-NHEJ. Cells 2022, 11, 2099. [Google Scholar] [CrossRef]
- Mladenov, E.; Staudt, C.; Soni, A.; Murmann-Konda, T.; Siemann-Loekes, M.; Iliakis, G. Strong Suppression of Gene Conversion with Increasing DNA Double-Strand Break Load Delimited by 53bp1 and Rad52. Nucleic Acids Res. 2020, 48, 1905–1924. [Google Scholar] [CrossRef][Green Version]
- Manke, I.A.; Nguyen, A.; Lim, D.; Stewart, M.Q.; Elia, A.E.H.; Yaffe, M.B. Mapkap Kinase-2 Is a Cell Cycle Checkpoint Kinase That Regulates the G2/M Transition and S Phase Progression in Response to Uv Irradiation. Mol. Cell 2005, 17, 37–48. [Google Scholar] [CrossRef]
- Reinhardt, H.C.; Aslanian, A.S.; Lees, J.A.; Yaffe, M.B. p53-Deficient Cells Rely on ATM- and ATR-Mediated Checkpoint Signaling through the p38MAPK/MK2 Pathway for Survival after DNA Damage. Cancer Cell 2007, 11, 175–189. [Google Scholar] [CrossRef][Green Version]
- Reinhardt, H.C.; Hasskamp, P.; Schmedding, I.; Morandell, S.; van Vugt, M.A.; Wang, X.; Linding, R.; Ong, S.E.; Weaver, D.; Carr, S.A.; et al. DNA Damage Activates a Spatially Distinct Late Cytoplasmic Cell-Cycle Checkpoint Network Controlled by Mk2-Mediated Rna Stabilization. Mol. Cell 2010, 40, 34–49. [Google Scholar] [CrossRef]
- Bulavin, D.V.; Higashimoto, Y.; Popoff, I.J.; Gaarde, W.A.; Basrur, V.; Potapova, O.; Appella, E.; Fornace, A.J., Jr. Initiation of a G2/M Checkpoint after Ultraviolet Radiation Requires P38 Kinase. Nature 2001, 411, 102–107. [Google Scholar] [CrossRef]
- Hirose, Y.; Katayama, M.; Stokoe, D.; Haas-Kogan, D.A.; Berger, M.S.; Pieper, R.O. The p38 Mitogen-Activated Protein Kinase Pathway Links the DNA Mismatch Repair System to the G2 Checkpoint and to Resistance to Chemotherapeutic DNA-Methylating Agents. Mol. Cell. Biol. 2003, 23, 8306–8315. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hirose, Y.; Katayama, M.; Berger, M.S.; Pieper, R.O. Cooperative function of Chk1 and p38 pathways in activating G2 arrest following exposure to temozolomide. J. Neurosurg. 2004, 100, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Stokes, M.P.; Michael, W.M. DNA damage-induced replication arrest in Xenopus egg extracts. J. Cell Biol. 2003, 163, 245–255. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mikhailov, A.; Shinohara, M.; Rieder, C.L. Topoisomerase Ii and Histone Deacetylase Inhibitors Delay the G2/M Transition by Triggering the P38 Mapk Checkpoint Pathway. J. Cell Biol. 2004, 166, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Engel, K.; Schultz, H.; Martin, F.; Kotlyarov, A.; Plath, K.; Hahn, M.; Heinemann, U.; Gaestel, M. Constitutive Activation of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 by Mutation of Phosphorylation Sites and an a-Helix Motif (*). J. Biol. Chem. 1995, 270, 27213–27221. [Google Scholar] [CrossRef][Green Version]
- Dietlein, F.; Kalb, B.; Jokic, M.; Noll, M.; Strong, A.; Tharun, L.; Ozretić, L.; Künstlinger, H.; Kambartel, K.; Randerath, J.; et al. A Synergistic Interaction between Chk1- and Mk2 Inhibitors in Kras-Mutant Cancer. Cell 2015, 162, 146–159. [Google Scholar] [CrossRef][Green Version]
- Canovas, B.; Nebreda, A.R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 346–366. [Google Scholar] [CrossRef]
- Han, J.; Wu, J.; Silke, J. An Overview of Mammalian P38 Mitogen-Activated Protein Kinases, Central Regulators of Cell Stress and Receptor Signaling [Version 1; Peer Review: 2 Approved]. F1000Research 2020, 9. [Google Scholar] [CrossRef]
- Munshi, A.; Ramesh, R. Mitogen-Activated Protein Kinases and Their Role in Radiation Response. Genes Cancer 2013, 4, 401–408. [Google Scholar] [CrossRef]
- Kim, E.K.; Choi, E.-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2010, 1802, 396–405. [Google Scholar] [CrossRef][Green Version]
- Lee, J.C.; Kassis, S.; Kumar, S.; Badger, A.; Adams, J.L. p38 Mitogen-Activated Protein Kinase Inhibitors—Mechanisms and Therapeutic Potentials. Pharmacol. Ther. 1999, 82, 389–397. [Google Scholar] [CrossRef]
- Rezatabar, S.; Karimian, A.; Rameshknia, V.; Parsian, H.; Majidinia, M.; Kopi, T.A.; Bishayee, A.; Sadeghinia, A.; Yousefi, M.; Monirialamdari, M.; et al. Ras/Mapk Signaling Functions in Oxidative Stress, DNA Damage Response and Cancer Progression. J. Cell Physiol. 2019, 234, 14951–14965. [Google Scholar] [CrossRef]
- Narang, H.; Bhat, N.; Gupta, S.K.; Santra, S.; Choudhary, R.K.; Kailash, S.; Krishna, M. Differential Activation of Mitogen-Activated Protein Kinases Following High and Low Let Radiation in Murine Macrophage Cell Line. Mol. Cell Biochem. 2009, 324, 85–91. [Google Scholar] [CrossRef]
- Dent, P.; Yacoub, A.; Fisher, P.B.; Hagan, M.P.; Grant, S. MAPK pathways in radiation responses. Oncogene 2003, 22, 5885–5896. [Google Scholar] [CrossRef][Green Version]
- Lee, Y.J.; Soh, J.W.; Dean, N.M.; Cho, C.K.; Kim, T.H.; Lee, S.J.; Lee, Y.S. Protein Kinase Cdelta Overexpression Enhances Radiation Sensitivity Via Extracellular Regulated Protein Kinase 1/2 Activation, Abolishing the Radiation-Induced G(2)-M Arrest. Cell Growth Differ. 2002, 13, 237–246. [Google Scholar]
- Taher, M.M.; Hershey, C.M.; Oakley, J.D.; Valerie, K. Role of the P38 and Mek-1/2/P42/44 Map Kinase Pathways in the Differential Activation of Human Immunodeficiency Virus Gene Expression by Ultraviolet and Ionizing Radiation. Photochem. Photobiol. 2000, 71, 455–459. [Google Scholar] [CrossRef]
- Schmidt-Ullrich, R.K.; Dent, P.; Grant, S.; Mikkelsen, R.B.; Valerie, K. Signal Transduction and Cellular Radiation Responses. Radiat. Res. 2000, 153, 245–257. [Google Scholar] [CrossRef]
- Bulavin, D.V.; Amundson, S.A.; Fornace, A.J. P38 and Chk1 Kinases: Different Conductors for the G2/M Checkpoint Symphony. Curr. Opin. Genet. Dev. 2002, 12, 92–97. [Google Scholar] [CrossRef]
- Wang, X.; McGowan, C.H.; Zhao, M.; He, L.; Downey, J.S.; Fearns, C.; Wang, Y.; Huang, S.; Han, J. Involvement of the Mkk6-P38γ Cascade in Γ-Radiation-Induced Cell Cycle Arrest. Mol. Cell Biol. 2000, 20, 4543–4552. [Google Scholar] [CrossRef][Green Version]
- Xu, B.; Kim, S.-T.; Lim, D.-S.; Kastan, M.B. Two Molecularly Distinct G2/M Checkpoints Are Induced by Ionizing Irradiation. Mol. Cell Biol. 2002, 22, 1049–1059. [Google Scholar] [CrossRef][Green Version]
- Cliby, W.A.; Roberts, C.J.; Cimprich, K.A.; Stringer, C.M.; Lamb, J.R.; Schreiber, S.L.; Friend, S.H. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 1998, 17, 159–169. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Myers, J.S.; Cortez, D. Rapid Activation of ATR by Ionizing Radiation Requires ATM and Mre11. J. Biol. Chem. 2006, 281, 9346–9350. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tomimatsu, N.; Mukherjee, B.; Burma, S. Distinct roles of ATR and DNA-PKcs in triggering DNA damage responses in ATM-deficient cells. EMBO Rep. 2009, 10, 629–635. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shibata, A.; Barton, O.; Noon, A.T.; Dahm, K.; Deckbar, D.; Goodarzi, A.A.; Lobrich, M.; Jeggo, P.A. Role of Atm and the Damage Response Mediator Proteins 53bp1 and Mdc1 in the Maintenance of G2/M Checkpoint Arrest. Mol. Cell Biol. 2010, 30, 3371–3383. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xue, L.; Furusawa, Y.; Okayasu, R.; Miura, M.; Cui, X.; Liu, C.; Hirayama, R.; Matsumoto, Y.; Yajima, H.; Yu, D. The Complexity of DNA Double Strand Break Is a Crucial Factor for Activating Atr Signaling Pathway for G2/M Checkpoint Regulation Regardless of Atm Function. DNA Repair 2015, 25, 72–83. [Google Scholar] [CrossRef]
- Mladenova, V.; Mladenov, E.; Scholz, M.; Stuschke, M.; Iliakis, G. Strong Shift to ATR-Dependent Regulation of the G2-Checkpoint after Exposure to High-LET Radiation. Life 2021, 11, 560. [Google Scholar] [CrossRef]
- Hirao, A.; Cheung, A.; Duncan, G.; Girard, P.-M.; Elia, A.J.; Wakeham, A.; Okada, H.; Sarkissian, T.; Wong, J.A.; Sakai, T.; et al. Chk2 Is a Tumor Suppressor That Regulates Apoptosis in both an Ataxia Telangiectasia Mutated (ATM)-Dependent and an ATM-Independent Manner. Mol. Cell Biol. 2002, 22, 6521–6532. [Google Scholar] [CrossRef][Green Version]
- Matsuoka, S.; Huang, M.; Elledge, S.J. Linkage of ATM to Cell Cycle Regulation by the Chk2 Protein Kinase. Science 1998, 282, 1893–1897. [Google Scholar] [CrossRef]
- Rainey, M.D.; Black, E.J.; Zachos, G.; Gillespie, D.A. Chk2 Is Required for Optimal Mitotic Delay in Response to Irradiation-Induced DNA Damage Incurred in G2 Phase. Oncogene 2008, 27, 896–906. [Google Scholar] [CrossRef][Green Version]
- Cuadrado, M.; Martinez-Pastor, B.; Murga, M.; Toledo, L.I.; Gutierrez-Martinez, P.; Lopez, E.; Fernandez-Capetillo, O. ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J. Exp. Med. 2006, 203, 297–303. [Google Scholar] [CrossRef][Green Version]
- Cortez, D.; Guntuku, S.; Qin, J.; Elledge, S.J. ATR and ATRIP: Partners in Checkpoint Signaling. Science 2001, 294, 1713–1716. [Google Scholar] [CrossRef]
- Charrier, J.-D.; Durrant, S.J.; Golec, J.M.C.; Kay, D.P.; Knegtel, R.M.A.; MacCormick, S.; Mortimore, M.; O’Donnell, M.E.; Pinder, J.L.; Reaper, P.M.; et al. Discovery of Potent and Selective Inhibitors of Ataxia Telangiectasia Mutated and Rad3 Related (ATR) Protein Kinase as Potential Anticancer Agents. J. Med. Chem. 2011, 54, 2320–2330. [Google Scholar] [CrossRef]
- Fokas, E.; Prevo, R.; Hammond, E.M.; Brunner, T.B.; McKenna, W.G.; Muschel, R.J. Targeting Atr in DNA Damage Response and Cancer Therapeutics. Cancer Treat. Rev. 2014, 40, 109–117. [Google Scholar] [CrossRef]
- Karnitz, L.M.; Zou, L. Molecular Pathways: Targeting ATR in Cancer Therapy. Clin. Cancer Res. 2015, 21, 4780–4785. [Google Scholar] [CrossRef][Green Version]
- Blasina, A.; Hallin, J.; Chen, E.; Arango, M.E.; Kraynov, E.; Register, J.; Grant, S.; Ninkovic, S.; Chen, P.; Nichols, T.; et al. Breaching the DNA Damage Checkpoint Via Pf-00477736, a Novel Small-Molecule Inhibitor of Checkpoint Kinase 1. Mol. Cancer Ther. 2008, 7, 2394–2404. [Google Scholar] [CrossRef][Green Version]
- Gurgis, F.; Ziaziaris, W.; Munoz, L. Mapk-Activated Protein Kinase 2 (Mk2) in Neuroinflammation, Hsp27 Phosphorylation and Cell Cycle: Role and Targeting. Mol. Pharmacol. 2013. [Google Scholar]
- Grierson, P.M.; Dodhiawala, P.B.; Cheng, Y.; Chen, T.H.-P.; Khawar, I.A.; Wei, Q.; Zhang, D.; Li, L.; Herndon, J.; Monahan, J.B.; et al. The Mk2/Hsp27 Axis Is a Major Survival Mechanism for Pancreatic Ductal Adenocarcinoma under Genotoxic Stress. Sci. Transl. Med. 2021, 13, eabb5445. [Google Scholar]
- Landry, J.; Lambert, H.; Zhou, M.; Lavoie, J.N.; Hickey, E.; Weber, L.A.; Anderson, C.W. Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J. Biol. Chem. 1992, 267, 794–803. [Google Scholar] [CrossRef]
- Soni, A.; Duan, X.; Stuschke, M.; Iliakis, G. ATR Contributes More Than ATM in Intra-S-Phase Checkpoint Activation after IR, and DNA-PKcs Facilitates Recovery: Evidence for Modular Integration of ATM/ATR/DNA-PKcs Functions. Int. J. Mol. Sci. 2022, 23, 7506. [Google Scholar] [CrossRef]
- Kotlyarov, A.; Neininger, A.; Schubert, C.; Eckert, R.; Birchmeier, C.; Volk, H.D.; Gaestel, M. Mapkap Kinase 2 Is Essential for Lps-Induced Tnf-Alpha Biosynthesis. Nat. Cell Biol. 1999, 1, 94–97. [Google Scholar] [CrossRef]
- Ben-Levy, R.; Hooper, S.; Wilson, R.; Paterson, H.F.; Marshall, C.J. Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr. Biol. 1998, 8, 1049–1057. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kotlyarov, A.; Yannoni, Y.; Fritz, S.; Laaß, K.; Telliez, J.-B.; Pitman, D.; Lin, L.-L.; Gaestel, M. Distinct Cellular Functions of MK2. Mol. Cell Biol. 2002, 22, 4827–4835. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xiao, Z.; Xue, J.; Sowin, T.J.; Zhang, H. Differential Roles of Checkpoint Kinase 1, Checkpoint Kinase 2, and Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Mediating DNA Damage–Induced Cell Cycle Arrest: Implications for Cancer Therapy. Mol. Cancer Ther. 2006, 5, 1935–1943. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Goldstone, S.; Pavey, S.; Forrest, A.; Sinnamon, J.; Gabrielli, B. Cdc25-dependent activation of cyclin A/cdk2 is blocked in G2 phase arrested cells independently of ATM/ATR. Oncogene 2001, 20, 921–932. [Google Scholar] [CrossRef] [PubMed][Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, D.; Mladenov, E.; Soni, A.; Stuschke, M.; Iliakis, G. The p38/MK2 Pathway Functions as Chk1-Backup Downstream of ATM/ATR in G2-Checkpoint Activation in Cells Exposed to Ionizing Radiation. Cells 2023, 12, 1387. https://doi.org/10.3390/cells12101387
Luo D, Mladenov E, Soni A, Stuschke M, Iliakis G. The p38/MK2 Pathway Functions as Chk1-Backup Downstream of ATM/ATR in G2-Checkpoint Activation in Cells Exposed to Ionizing Radiation. Cells. 2023; 12(10):1387. https://doi.org/10.3390/cells12101387
Chicago/Turabian StyleLuo, Daxian, Emil Mladenov, Aashish Soni, Martin Stuschke, and George Iliakis. 2023. "The p38/MK2 Pathway Functions as Chk1-Backup Downstream of ATM/ATR in G2-Checkpoint Activation in Cells Exposed to Ionizing Radiation" Cells 12, no. 10: 1387. https://doi.org/10.3390/cells12101387
APA StyleLuo, D., Mladenov, E., Soni, A., Stuschke, M., & Iliakis, G. (2023). The p38/MK2 Pathway Functions as Chk1-Backup Downstream of ATM/ATR in G2-Checkpoint Activation in Cells Exposed to Ionizing Radiation. Cells, 12(10), 1387. https://doi.org/10.3390/cells12101387