Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Plant and Soil Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- White, E.M. Woody Biomass for Bioenergy and Biofuels in the United States—A Briefing Paper; General Technical Report PNW-GTR-825; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2010; p. 45.
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009. [Google Scholar]
- Bruun, E.W.; Hauggaardd-Nielsen, H.; Ibradhim, N.; Egsgaard, H.; Ambus, P.; Jensen, A.P.; Dam-Johansen, K. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 2011, 35, 1182–1189. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Paneque, M.; Miller, A.Z.; Knicker, H. Relating physical and chemical properties of four different biochars and their application rate of biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environ. 2014, 499, 175–189. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef]
- Brown, T.T.; Huggins, D.R. Soil carbon sequestration in the dryland cropping region of the Pacific Northwest. J. Soil Water Conserv. 2012, 67, 406–415. [Google Scholar] [CrossRef]
- Ghimire, R.; Machado, S.; Bista, P. Soil pH, soil organic matter, and crop yields in winter wheat-summer fallow systems. Agron. J. 2017, 109, 706–717. [Google Scholar] [CrossRef]
- Keith, A.; Singh, B.; Singh, B.P. Interactive priming of biochar and labile organic matter mineraliztion in smecitie- rich soil. Environ. Sci. Technol. 2011, 45, 9611–9618. [Google Scholar] [CrossRef] [PubMed]
- West, T.O.; McBride, A.C. The contribution of agricultural lime to carbon dioxide emissions in the United State: Dissolution, transport and net emissions. Agric. Ecosyst. Environ. 2005, 108, 145–154. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Brown, S.; Carpenter, A.; Beecher, N. A calculator tool for determining greenhouse gas emissions for processing and end use. Environ. Sci. Technol. 2010, 44, 9509–9515. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Gundale, M.J.; DeLuca, T.H. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biol. Fertil. Soils 2007, 43, 303–311. [Google Scholar] [CrossRef]
- Unger, R.; Killorn, R.; Brewer, C. Effects of soil application of different biochars on selected soil chemical properties. Commun. Soil Sci. Plant 2011, 19, 2310–2321. [Google Scholar] [CrossRef]
- Haefele, S.M.; Konboon, Y.; Wongboon, W.; Amarante, S.; Maarifat, A.A.; Pfeiffer, E.M.; Knoblauch, C. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res. 2011, 121, 430–440. [Google Scholar] [CrossRef]
- Lone, A.H.; Najar, G.R.; Ganie, M.A.; Sofi, J.A.; Ali, T. Biochar for Sustainable Soil Health: A Review of Prospects and Concerns. Pedosphere 2015, 25, 639–653. [Google Scholar] [CrossRef]
- Albuquerque, J.A.; Salazar, P.; Barron, V.; Torrent, J.; del Campillo, M.D.; Gallardo, A.; Villar, R. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron. Sustain. Dev. 2013, 33, 475–484. [Google Scholar] [CrossRef]
- Chan, K.Y.; van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macedo, J.L.V.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Soil Survey Staff. Web Soil Survey. Natural Resources Conserv, Serv., USDA, 2016. Available online: http://websoilsurvery.sc.gov.usda.gov (accessed on 5 December 2016).
- ASTM International. ASTM D1762-84. 2013. Standard Test Method for Chemical Analysis of Wood Charcoal; ASTM International: West Conshohocken, PA, USA, 2013.
- Ghimire, R.; Norton, J.B.; Pendall, E. Alfalfa-grass biomass, soil organic carbon, and total nitrogen under different management approaches in an irrigate agroecosystem. Plant Soil 2014, 374, 173–184. [Google Scholar] [CrossRef]
- Lehmann, J.; Kuzyakov, Y.; Pan, G.; Ok, Y.S. Biochar and the plant-soil interface. Plant Soil 2015, 395, 1–5. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2013, 60, 393–404. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar applications to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Lehmann, J.; da Silva, J.P.; Seiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological anthrosol and a Ferralsol of the central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 2000, 14, 777–793. [Google Scholar] [CrossRef]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91–118. [Google Scholar] [CrossRef]
- Baronti, S.; Alberti, G.; Vedove, G.D.; Gennaro, F.D.; Fellet, G.; Genesio, L.; Migletta, F.; Peressotti, A.; Vaccari, F.P. The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Ital. J. Agron. 2010, 5, 3–12. [Google Scholar] [CrossRef]
Characteristics | Biochar | Soil |
---|---|---|
C | 900 g kg−1 | 6.4 g kg−1 |
N | 1.8 g kg−1 | 0.6 g kg−1 |
C:N | 500:1 | 11:1 |
pH | 10.6 | 4.8 |
Volatile matter | 51 g kg−1 | - |
Ash content | 188 g kg−1 | - |
Moisture | 48 g kg−1 | - |
EC | - | 2.8 dS m−1 |
CEC | - | 3.5 cmol kg−1 |
NO3-N | - | 271 mg kg−1 |
NH4-N | - | 28.0 mg kg−1 |
P | - | 40.3 mg kg−1 |
K | - | 1105 mg kg−1 |
S | - | 30.5 mg kg−1 |
pH | EC * | SOM | P | K | S | NO3-N | NH4-N | Shoot | Root | |
---|---|---|---|---|---|---|---|---|---|---|
Biochar (B) | <0.0001 | 0.6073 | 0.0453 | <0.0001 | <0.0001 | <0.0001 | 0.0009 | 0.0792 | 0.0204 | 0.0032 |
Fertilizer (F) | 0.0004 | 0.0009 | 0.0689 | 0.0010 | 0.3876 | 0.0002 | 0.0145 | 0.0037 | 0.0067 | 0.96 |
B × F | 0.0020 | 0.0889 | 0.0637 | <0.0001 | 0.0006 | 0.0011 | 0.0326 | 0.0333 | 0.0566 | 0.26 |
EC | OM | P | K | S | NO3-N | NH4-N | |
---|---|---|---|---|---|---|---|
With Fertilizer application | |||||||
pH | −0.38 | 0.62 | 0.94 *** | 0.93 *** | 0.98 *** | −0.61 * | −0.51 * |
EC | 0.12 | −0.32 | −0.42 | −0.38 | 0.06 | −0.21 | |
OM | 0.62 ** | 0.54 * | 0.62 ** | −0.61 ** | −0.70 ** | ||
P | 0.96 *** | 0.88 *** | −0.45 | −0.53 * | |||
K | 0.86 *** | −0.40 | −0.38 | ||||
S | −0.64 ** | −0.48 | |||||
NO3-N | 0.56 * | ||||||
Without fertilizer application | |||||||
pH | −0.21 | −0.02 | 0.96 *** | 0.99 *** | 0.99 *** | 0.49 * | 0.66 ** |
EC | −0.21 | −0.24 | −0.22 | −0.20 | 0.13 | 0.28 | |
OM | 0.05 | −0.01 | −0.06 | −0.37 | −0.47 | ||
P | 0.96 *** | 0.94 *** | 0.41 | 0.60 ** | |||
K | 0.99 *** | 0.56 * | 0.61 ** | ||||
S | 0.59 ** | 0.63 ** | |||||
NO3-N | 0.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bista, P.; Ghimire, R.; Machado, S.; Pritchett, L. Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management. Agronomy 2019, 9, 623. https://doi.org/10.3390/agronomy9100623
Bista P, Ghimire R, Machado S, Pritchett L. Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management. Agronomy. 2019; 9(10):623. https://doi.org/10.3390/agronomy9100623
Chicago/Turabian StyleBista, Prakriti, Rajan Ghimire, Stephen Machado, and Larry Pritchett. 2019. "Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management" Agronomy 9, no. 10: 623. https://doi.org/10.3390/agronomy9100623
APA StyleBista, P., Ghimire, R., Machado, S., & Pritchett, L. (2019). Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management. Agronomy, 9(10), 623. https://doi.org/10.3390/agronomy9100623