Combined Di-Ammonium Phosphate and Straw Return Increase Yield in Sweet Corn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Sample Collection and Calculation
2.3. Economic Analysis
2.4. Statistical Analysis
3. Result
3.1. Phonological and Growth Parameter
3.2. Yield and Yield Components
3.3. Economic Survey
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, N.; Singh, S.; Shevkani, K. Maize: Composition, bioactive constituents, and unleavened bread. In Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2019; pp. 111–121. [Google Scholar]
- Banotra, M.; Sharma, B.C.; Nandan, B.; Arya, V.M.; Kumar, R.; Verma, A.; Shah, I.A.; Gupta, V. Yield, Quality and Economics of different Sweet Corn (Zea mays L. Var. Saccharata) Cultivars at different Planting and Harvesting Dates under Shiwalik Foothills of J&K. Indian J. Ecol. 2017, 44, 575–578. [Google Scholar]
- Khan, Z.H.; Khalil, S.K.; Nigar, S.; Khalil, I.; Haq, I.; Ahmad, I.; Ali, A.; Khan, M.Y. Phenology and yield of sweet corn landraces influenced by planting dates. Sarhad J. Agric 2009, 25, 153–157. [Google Scholar]
- Chowdhury, R.B.; Zhang, X. Phosphorus use efficiency in agricultural systems: A comprehensive assessment through the review of national scale substance flow analyses. Ecol. Indic. 2021, 121, 107172. [Google Scholar] [CrossRef]
- Adeyemi, O.; Keshavarz-Afshar, R.; Jahanzad, E.; Battaglia, M.L.; Luo, Y.; Sadeghpour, A. Effect of wheat cover crop and split nitrogen application on corn yield and nitrogen use efficiency. Agronomy 2020, 10, 1081. [Google Scholar] [CrossRef]
- Salimpour, S.I.; Khavazi, K.; Nadian, H.; Besharati, H.; Miransari, M. Enhancing phosphorous availability to canola (“Brassica napus” L.) using P solubilizing and sulfur oxidizing bacteria. Aust. J. Crop Sci. 2010, 4, 330–334. [Google Scholar]
- Asim, M.; Hussain, Q.; Ali, A.; Farooq, S.; Khan, R.; Shah, S.A.A. Responses of maize to different levels and sources of phosphorus application. Pure Appl. Biol. 2017, 6, 1030–1036. [Google Scholar] [CrossRef]
- Wahid, F.; Muhammad, S.; Khan, M.A.; Ali, A.; Khattak, A.M.; Saljoqi, A.R. Wheat yield and phosphorus uptake as affected by rock phosphate added with different organic fertilizers. Ciência Técnica Vitivinícola J. 2015, 30, 90–100. [Google Scholar]
- Yadav, H.; Fatima, R.; Sharma, A.; Mathur, S. Enhancement of applicability of rock phosphate in alkaline soils by organic compost. Appl. Soil Ecol. 2017, 113, 80–85. [Google Scholar] [CrossRef]
- Minhas, R. Paradoxically Vicious Cycle of Agriculture Pollution: A Contextual Bibliographical Review for Prospective Agenda. Plant Arch. 2020, 20, 3068–3075. [Google Scholar]
- Pierzynski, G.M.; Logan, T.J. Crop, soil, and management effects on phosphorus soil test levels: A review. J. Prod. Agric. 1993, 6, 513–520. [Google Scholar] [CrossRef]
- Mao, Q.; Chen, H.; Gurmesa, G.A.; Gundersen, P.; Ellsworth, D.S.; Gilliam, F.S.; Wang, C.; Zhu, F.; Ye, Q.; Mo, J. Negative effects of long-term phosphorus additions on understory plants in a primary tropical forest. Sci. Total Environ. 2021, 798, 149306. [Google Scholar] [CrossRef] [PubMed]
- Kizito, S.; Luo, H.; Lu, J.; Bah, H.; Dong, R.; Wu, S. Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability 2019, 11, 3211. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.K.; Kumar, V.; Prasad, B.; Singh, A.P. Long-term effect of crop residues and zinc fertilizer on crop yield, nutrient uptake and fertility build-up under rice-wheat cropping system in calciorthents. J. Indian Soc. soil Sci. 2010, 58, 205–211. [Google Scholar]
- Croce, S.; Wei, Q.; D’Imporzano, G.; Dong, R.; Adani, F. Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol. Adv. 2016, 34, 1289–1304. [Google Scholar] [CrossRef]
- Mandal, K.G.; Misra, A.K.; Hati, K.M.; Bandyopadhyay, K.K.; Ghosh, P.K.; Mohanty, M. Rice residue-management options and effects on soil properties and crop productivity. J. Food Agric. Environ. 2004, 2, 224–231. [Google Scholar]
- Cai, A.; Xu, H.; Shao, X.; Zhu, P.; Zhang, W.; Xu, M.; Murphy, D. V Carbon and nitrogen mineralization in relation to soil particle-size fractions after 32 years of chemical and manure application in a continuous maize cropping system. PLoS ONE 2016, 11, e0152521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titab, D.; Shri, R.; Nand, R. Effect of long term application inorganic fertilizers and manure on yields, nutrients uptake and grain quality of wheat under rice-wheat cropping system in a Mollisols. Pantnagar J. Res. 2011, 9, 214–220. [Google Scholar]
- Huang, G.B.; Luo, Z.Z.; Li, L.L.; Zhang, R.Z.; Li, G.D.; Cai, L.Q.; Xie, J.H. Effects of stubble management on soil fertility and crop yield of rainfed area in Western Loess Plateau, China. Appl. Environ. Soil Sci. 2012, 2012, 256312. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.H.; Wei, J.G.; Li, J.; Feng, S.F.; Li, Z.F.; Jiang, G.M.; Lucas, M.; Wu, G.L.; Ning, T.Y. Anaerobic fermentation technology increases biomass energy use efficiency in crop residue utilization and biogas production. Renew. Sustain. Energy Rev. 2012, 16, 4588–4596. [Google Scholar] [CrossRef]
- Bunna, S.; Sinath, P.; Makara, O.; Mitchell, J.; Fukai, S. Effects of straw mulch on mungbean yield in rice fields with strongly compacted soils. Field Crops Res. 2011, 124, 295–301. [Google Scholar] [CrossRef]
- Ullah, J.; Shah, S.; Mihoub, A.; Jamal, A.; Saeed, M.F.; Székely, Á.; Radicetti, E.; Salman, M.; Caballero-Calvo, A. Assessing the Effect of Combining Phosphorus Fertilizers with Crop Residues on Maize (Zea Mays L.) Productivity and Financial Benefits. Gesunde Pflanz. 2023, 1–14. [Google Scholar] [CrossRef]
- Salman, M.; Inamullah; Jamal, A.; Mihoub, A.; Saeed, M.F.; Radicetti, E.; Ahmad, I.; Naeem, A.; Ullah, J.; Pampana, S. Composting Sugarcane Filter Mud with Different Sources Differently Benefits Sweet Maize. Agronomy 2023, 13, 748. [Google Scholar] [CrossRef]
- Marlina, N.; Rahim, S.E.; Hawayanti, E. Utilization of Organic Fertilizer on Sweet Corn (Zea mays saccharata Sturt) Crop at Shallow Swamp Land. MATEC Web Conf. 2017, 97, 1103. [Google Scholar]
- Akhtar, K.; Shah, S.N.M.; Ali, A.; Zaheer, S.; Wahid, F.; Khan, A.; Shah, M.; Bibi, S.; Majid, A. Effects of humic acid and crop residues on soil and wheat nitrogen contents. Am. J. Plant Sci. 2014, 5, 1277–1284. [Google Scholar] [CrossRef] [Green Version]
- Afridi, M.Z.; Khan, A.; Akbar, H. Integrated management of crop residue and N fertilizer for wheat production. Pak. J. Bot. 2012, 44, 2015–2019. [Google Scholar]
- Shah, T.; Khan, H.; Noor, M.A.; Ghoneim, A.; Wang, X.; Sher, A.; Nasir, M.; Basahi, M.A. Effects of potassium on phenological, physiological and agronomic traits of maize (Zea mays L.) under high nitrogen nutrition with optimum and reduced irrigation. Appl. Ecol. Environ. Res. 2018, 16, 7079–7097. [Google Scholar] [CrossRef]
- Khan, I.; Amanullah; Jamal, A.; Mihoub, A.; Farooq, O.; Farhan Saeed, M.; Roberto, M.; Radicetti, E.; Zia, A.; Azam, M. Partial substitution of chemical fertilizers with organic supplements increased wheat productivity and profitability under limited and assured irrigation regimes. Agriculture 2022, 12, 1754. [Google Scholar] [CrossRef]
- Saeed, M.F.; Jamal, A.; Muhammad, D.; Shah, G.M.; Bakhat, H.F.; Ahmad, I.; Ali, S.; Ihsan, F.; Wang, J. Optimizing phosphorus levels in wheat grown in a calcareous soil with the use of adsorption isotherm models. J. Soil Sci. Plant Nutr. 2021, 21, 81–94. [Google Scholar] [CrossRef]
- Jamal, A.; Fawad, M. Effectiveness of phosphorous fertilizers in wheat crop production in Pakistan. J. Hortic. Plant Res. 2019, 5, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Ramzan, M.; Khan, G.D.; Khalil, S.K. Emergence in wheat as affected by different tillage implements and soil compaction levels. Sarhad J. Agric 2014, 30, 93–100. [Google Scholar]
- Musa, U.T.; Usman, T.H. Leaf area determination for maize (Zea mays L.), okra (Abelmoschus esculentus L.) and cowpea (Vigna unguiculata L.) crops using linear measurements. J. Biol. Agric. Healthc. 2016, 6, 104–111. [Google Scholar]
- Ramadhan, M.N. Yield and yield components of maize and soil physical properties as affected by tillage practices and organic mulching. Saudi J. Biol. Sci. 2021, 28, 7152–7159. [Google Scholar] [CrossRef] [PubMed]
- Chukwudi, U.P.; Kutu, F.R.; Mavengahama, S. Heat stress effect on the grain yield of three drought-tolerant maize varieties under varying growth conditions. Plants 2021, 10, 1532. [Google Scholar] [CrossRef]
- Kaliba, A.R.; Verkuijl, H.; Mwangi, W.M.; Moshi, A.J.; Chilagane, A.; Kaswende, J.S.; Anandajayasekeram, P. Adoption of Maize Production Technologies in Eastern Tanzania; CIMMYT: El Batan, Mexico, 1998. [Google Scholar]
- Arnold, C.Y. Predicting Stages of Sweet Corn (Zea mays L.) Development1. J. Am. Soc. Hortic. Sci. 1974, 99, 501–505. [Google Scholar] [CrossRef]
- Yao, Q.; Yang, K.; Pan, G.; Rong, T. The effects of low phosphorus stress on morphological and physiological characteristics of maize (Zea mays L.) landraces. Agric. Sci. China 2007, 6, 559–566. [Google Scholar] [CrossRef]
- Akanbi, W.B.; Togun, A.O. Productivity and Influence of maize stover compost on Growth, Yield and Nutrient Uptake of Amaranth. Sci. Hortic. 2002, 93, 1–8. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Huang, H.; Qu, P.; Wei, Z. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavailab. 2021, 33, 164–173. [Google Scholar] [CrossRef]
- Lu, X. A meta-analysis of the effects of crop residue return on crop yields and water use efficiency. PLoS ONE 2020, 15, e0231740. [Google Scholar] [CrossRef]
- Shen, Z.; Ruan, Y.; Wang, B.; Zhong, S.; Su, L.; Li, R.; Shen, Q. Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial. Appl. Soil Ecol. 2015, 93, 111–119. [Google Scholar] [CrossRef]
- Su, Y.; Lv, J.L.; Yu, M.; Ma, Z.H.; Xi, H.; Kou, C.L.; He, Z.C.; Shen, A.L. Long-term decomposed straw return positively affects the soil microbial community. J. Appl. Microbiol. 2020, 128, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Amanullah, A.; Zakirullah, M. Timing and rate of phosphorus application influence maize phenology, yield and profitability in Northwest Pakistan. Egypt. Acad. J. Biol. Sci. H. Bot. 2010, 1, 29–39. [Google Scholar] [CrossRef]
- Khalil, S.K.; Khan, S.; Rahman, A.; Khan, A.Z.; Khalil, I.H.; Amanullah, W.S.; Mohammad, F.; Nigar, S.; Zubair, M.; Parveen, S. Seed priming and phosphorus application enhance phenology and dry matter production of wheat. Pak. J. Bot. 2010, 42, 1849–1856. [Google Scholar]
- Turk, M.A.; Tawaha, A.-R.M. Impact of seeding rate, seeding date, rate and method of phosphorus application in faba bean (Vicia faba L. minor) in the absence of moisture stress. BASE 2002, 6, 171–178. [Google Scholar]
- Arslan, Y.; Subasi, I.; Katar, D.; Kodas, R.; Keyvanoglu, H. Effect of Different Levels of Nitrogen and Phosphorus on The Yield and Yield Component of False Flax (Camelina sativa L.) CRANTZ. Anadolu Tarim Bilim. Derg. 2014, 29, 231. [Google Scholar] [CrossRef]
- Khan, F.; Khan, S.; Fahad, S.; Faisal, S.; Hussain, S.; Ali, S.; Ali, A. Effect of different levels of nitrogen and phosphorus on the phenology and yield of maize varieties. Am. J. Plant Sci. 2014, 5, 2582–2590. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.J.; Ye, D.L.; Su, D.; Li, F.; Zheng, C.Y.; Wu, L.Q. Effects of phosphorus application on phosphorus uptake and utilization of sweet corn. Acta Agron. Sin. 2021, 47, 169–176. [Google Scholar] [CrossRef]
- Fahrurrozi, F.; Muktamar, Z.; Sudjatmiko, S.; Chozin, M.; Setyowati, N. Phosphorus Uptakes and Yields of Sweet Corn Grown under Organic Production System. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Manila, Philippines, 18–21 October 2018; Volume 347, p. 12006. [Google Scholar]
- Onasanya, R.O.; Aiyelari, O.P.; Onasanya, A.; Oikeh, S.; Nwilene, F.E.; Oyelakin, O.O. Growth and yield response of maize (Zea mays L.) to different rates of nitrogen and phosphorus fertilizers in southern Nigeria. World J. Agric. Sci. 2009, 5, 400–407. [Google Scholar]
- Varatharajan, T.; Choudhary, A.K.; Pooniya, V.; Dass, A.; Meena, M.C.; Gurang, B.; Harish, M.N. Influence of different integrated crop management modules on growth indices and productivity of pigeonpea in semi-arid north Indian plains. Ann. Agric. Res. New Ser. 2018, 39, 398–405. [Google Scholar]
- Sadiq, G.; Khan, A.A.; Inamullah, A.R.; Fayyaz, H.; Naz, G.; Nawaz, H.; Ali, I.; Raza, H.; Amin, J.; Ali, S. Impact of phosphorus and potassium levels on yield and yield components of maize. Pure Appl. Biol. 2017, 6, 1071–1078. [Google Scholar] [CrossRef]
- Motazedian, A.; Kazemeini, S.A.; Bahrani, M.J. Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management. Agric. Water Manag. 2019, 224, 105748. [Google Scholar] [CrossRef]
- Massawe, P.I.; Mrema, J. Effects of different phosphorus sources and application rates on soils residual N and P in the rice field. Adv. Plants Agric. Res. 2018, 8, 167–169. [Google Scholar] [CrossRef]
- Malhotra, H.; Vandana; Sharma, S.; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapore, 2018; pp. 171–190. [Google Scholar]
- Maqsood, M.; Abid, A.M.; Iqbal, A.; Hussain, M.I. Effect of variable rate of nitrogen and phosphorus on growth and yield of maize (golden). Online J. Biol. Sci. 2001, 1, 19–20. [Google Scholar] [CrossRef] [Green Version]
- Shafi, M.; Bakht, J.; Jan, M.T.; Shah, Z. Soil C and N dynamics and maize (Zea may L.) yield as affected by cropping systems and residue management in North-western Pakistan. Soil Tillage Res. 2007, 94, 520–529. [Google Scholar] [CrossRef]
- Khan, K.S.; Ali, M.M.; Naveed, M.; Rehmani, M.I.A.; Shafique, M.W.; Ali, H.M.; Abdelsalam, N.R.; Ghareeb, R.Y.; Feng, G. Co-application of organic amendments and inorganic P increase maize growth and soil carbon, phosphorus availability in calcareous soil. Front. Environ. Sci. 2022, 10, 949371. [Google Scholar] [CrossRef]
- Mubeen, K.; Wasaya, A.; Rehman, H.U.; Yasir, T.A.; Farooq, O.; Imran, M.; Ikram, R.M.; Nazeer, R.; Zahoor, F.; Yonas, M.W. Integrated phosphorus nutrient sources improve wheat yield and phosphorus use efficiency under sub humid conditions. PLoS ONE 2021, 16, e0255043. [Google Scholar] [CrossRef] [PubMed]
- Irfanullah, H.A.; Hussain, A.A.I.; Khan, M.W.; Ahmadzai, M.D. Yield and yield attributes of maize (Zea mays L.) as affected by detasseling and potassium fertilization. Pure Appl. Biol. 2017, 6, 958–964. [Google Scholar]
- Tariq, M.; Saeed, A.; Nisar, M.; Mian, I.A.; Afzal, M. Effect of potassium rates and sources on the growth performance and on chloride accumulation of maize in two different textured soils of Haripur, Hazara division. Sarhad J. Agric. 2011, 27, 415–422. [Google Scholar]
- Masood, T.; Gul, R.; Munsif, F.; Jalal, F.; Hussain, Z.; Noreen, N.; Khan, H.; Nasiruddin, K.H. Effect of different phosphorus levels on the yield and yield components of maize. Sarhad J. Agric. 2011, 27, 167–170. [Google Scholar]
- Jan, M.F.; Ahmadzai, M.D.; Liaqat, W.; Ahmad, H.; Rehan, W. Effect of poultry manure and phosphorous on phenology, yield and yield components of wheat. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3751–3760. [Google Scholar]
- Ahmad Alias, M.U.; Ullah, E.; Warraich, E.A. Effects of different phosphorus levels on the growth and yield of two cultivars of maize (Zea mays L.). Int. J. Agric. Biol. 2003, 4, 632–634. [Google Scholar]
- Amanullah; Asif, M.; Malhi, S.S.; Khattak, R.A. Effects of phosphorus fertilizer source and plant density on growth and yield of maize in Northwestern Pakistan. J. Plant Nutr. 2009, 32, 2080–2093. [Google Scholar] [CrossRef]
- Amanullah; Khan, A. Phosphorus and compost management influence maize (Zea mays) productivity under semiarid condition with and without phosphate solubilizing bacteria. Front. Plant Sci. 2015, 6, 1083. [Google Scholar] [PubMed] [Green Version]
- Zafar, M.; Abbasi, M.K.; Khaliq, A. Effect of different phosphorus sources on the growth, yield, energy content and phosphorus utilization efficiency in maize at Rawalakot Azad Jammu and Kashmir, Pakistan. J. Plant Nutr. 2013, 36, 1915–1934. [Google Scholar] [CrossRef]
Plant Time | Available N (mg·kg–1) | Available P (mg·kg−1) | Available K (mg·kg−1) | Organic Matter (%) | Soil pH |
---|---|---|---|---|---|
2021 | 24.3 | 9.8 | 93.2 | 1.29 | 7.98 |
2022 | 23.1 | 11.5 | 95.4 | 1.38 | 8.02 |
Phosphorus Sources | Crop Strew | Cost of Cultivation | Output | Gross Income | Net Income | BCR c | |||
---|---|---|---|---|---|---|---|---|---|
Fixed a | Variable b | Sum | Seeds | ||||||
PS0 | CR0 | 145.82 | 0.00 | 145.82 | 11.06 | 296.56 | 151.74 | 2.53 | |
DAP | // | 145.82 | 77.19 | 223.01 | 17.27 | 505.17 | 284.16 | 2.52 | |
SSP | // | 145.82 | 36.71 | 182.54 | 13.59 | 383.91 | 203.37 | 2.47 | |
NP | // | 145.82 | 36.71 | 182.54 | 15.80 | 456.65 | 276.12 | 3.07 | |
Control | Sorghum | 145.82 | 60.52 | 206.35 | 18.15 | 534.31 | 331.96 | 2.11 | |
DAP | // | 145.82 | 136.71 | 282.54 | 23.10 | 694.33 | 413.76 | 2.62 | |
SSP | // | 14.82 | 96.24 | 242.06 | 20.06 | 597.27 | 357.23 | 2.71 | |
NP | // | 145.82 | 96.24 | 242.06 | 20.65 | 616.67 | 376.62 | 2.77 | |
Control | Maize | 145.82 | 60.52 | 206.35 | 15.21 | 437.27 | 232.92 | 2.41 | |
DAP | // | 145.82 | 136.71 | 282.54 | 23.59 | 713.71 | 433.17 | 2.70 | |
SSP | // | 145.82 | 96.24 | 242.06 | 22.71 | 684.64 | 444.58 | 3.04 | |
NP | // | 145.82 | 96.24 | 242.06 | 23.15 | 700.16 | 457.12 | 3.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, J.; Chen, S.; Ruan, Y.; Ali, A.; Khan, N.M.; Rehman, M.N.U.; Fan, P. Combined Di-Ammonium Phosphate and Straw Return Increase Yield in Sweet Corn. Agronomy 2023, 13, 1885. https://doi.org/10.3390/agronomy13071885
Ullah J, Chen S, Ruan Y, Ali A, Khan NM, Rehman MNU, Fan P. Combined Di-Ammonium Phosphate and Straw Return Increase Yield in Sweet Corn. Agronomy. 2023; 13(7):1885. https://doi.org/10.3390/agronomy13071885
Chicago/Turabian StyleUllah, Jawad, Shanshuai Chen, Yunze Ruan, Akhtar Ali, Noor Muhammad Khan, Muhammad Nafees Ur Rehman, and Pingshan Fan. 2023. "Combined Di-Ammonium Phosphate and Straw Return Increase Yield in Sweet Corn" Agronomy 13, no. 7: 1885. https://doi.org/10.3390/agronomy13071885
APA StyleUllah, J., Chen, S., Ruan, Y., Ali, A., Khan, N. M., Rehman, M. N. U., & Fan, P. (2023). Combined Di-Ammonium Phosphate and Straw Return Increase Yield in Sweet Corn. Agronomy, 13(7), 1885. https://doi.org/10.3390/agronomy13071885