An Accurate, Affordable, and Precise Resazurin-Based Digital Imaging Colorimetric Assay for the Assessment of Fungicide Sensitivity Status of Fungal Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Fungal Inoculum, Microplate Cultures Preparation, and Incubation Conditions for Fungicide Sensitivity Testing
2.3. Spectrophotometric Assay (SPEC-Assay) for Fungicide Sensitivity Testing Based on Measuring the Reduction of Resazurin, a Metabolic Indicator for Fungal Respiration Activity
2.4. Resazurin-Based Colorimetric Assays (COL-Assay) for Fungicide Sensitivity Testing Using a Handmade Trans-Illuminator with Attached Mobile Phone Digital Cameras
2.5. Resazurin Oxidation-Reduction Gradient Testing for Substantiating the Assays
2.6. Accuracy and Precision of the Resazurin-Based Colorimetric Assay (COL-Assay) Based on a Handmade Trans-Illuminator for Fungicide Sensitivity Testing
2.7. Statistical Analysis
3. Results
3.1. Resazurin Oxidation-Reduction Gradient Testing for Substantiating the Assays
3.2. Accuracy and Precision of the Resazurin-Based Colorimetric Assay (COL-Assay) on a Handmade Trans-Illuminator for Fungicide Sensitivity Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Reagents and Media for Resazurin-Based Fungicide Sensitivity Assays
References
- Kleinkauf, N.; Verweij, P.E.; Arendrup, M.C.; Donnelly, P.J.; Cuenca-Estrella, M.; Fraaije, B.A.; Melchers, W.J.G.; Adriaenssens, N.; Kema, G.H.J.; Ullmann, A.; et al. Risk Assessment on the Impact of Environmental Usage of Triazoles on the Development and Spread of Resistance to Medical Triazoles in Aspergillus Species; Technical report/European Centre for Disease Prevention and Control; ECDC Europäisches Zentrum für die Prävention und die Kontrolle von Krankheiten: Stockholm, Sweden, 2013; ISBN 978-92-9193-444-7. [Google Scholar]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The Evolution of Fungicide Resistance. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 90, pp. 29–92. ISBN 978-0-12-802275-7. [Google Scholar]
- Corkley, I.; Fraaije, B.; Hawkins, N. Fungicide resistance management: Maximizing the effective life of plant protection products. Plant Pathol. 2022, 71, 150–169. [Google Scholar] [CrossRef]
- Casado, P.S.; De Carvalho, G.; Ceresini, P.C.; Castroagudín, V.L.; Sabbag, O.J.; Vicentini, S.N.C.; Maciel, J.L.N. Método eficiente, baseado em leitores de microplaca, para detecção de resistência a fungicidas triazóis (IDM) e estrobirulinas (IQe) em populações do patógeno da brusone do trigo. Summa Phytopathol. 2018, 44, 236–244. [Google Scholar] [CrossRef]
- Castroagudín, V.L.; Ceresini, P.C.; de Oliveira, S.C.; Reges, J.T.A.; Maciel, J.L.N.; Bonato, A.L.V.; Dorigan, A.F.; McDonald, B.A. Resistance to QoI Fungicides Is Widespread in Brazilian Populations of the Wheat Blast Pathogen Magnaporthe Oryzae. Phytopathol. 2015, 105, 284–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicentini, S.N.C.; Casado, P.S.; de Carvalho, G.; Moreira, S.I.; Dorigan, A.F.; Silva, T.C.; Silva, A.G.; Custódio, A.A.P.; Gomes, A.C.S.; Maciel, J.L.N.; et al. Monitoring of Brazilian wheat blast field populations reveals resistance to QoI, DMI, and SDHI fungicides. Plant Pathol. 2022, 71, 304–321. [Google Scholar] [CrossRef]
- Poloni, N.M.; Carvalho, G.; Vicentini, S.; Dorigan, A.; Maciel, J.L.; McDonald, B.A.; Moreira, S.; Hawkins, N.; Fraaije, B.A.; Kelly, D.E.; et al. Widespread distribution of resistance to triazole fungicides in Brazilian populations of the wheat blast pathogen. Plant Pathol. 2021, 70, 436–448. [Google Scholar] [CrossRef]
- De Mello, F.E.; Mathioni, S.M.; Fantin, L.H.; Rosa, D.D.; Antunes, R.F.D.; Filho, N.R.C.; Duvaresch, D.L.; Canteri, M.G. Sensitivity assessment and SDHC-I86F mutation frequency of Phakopsora pachyrhizi populations to benzovindiflupyr and fluxapyroxad fungicides from 2015 to 2019 in Brazil. Pest Manag. Sci. 2021, 77, 4331–4339. [Google Scholar] [CrossRef]
- Müller, M.A.; Stammler, G.; De Mio, L.L.M. Multiple resistance to DMI, QoI and SDHI fungicides in field isolates of Phakopsora pachyrhizi. Crop. Prot. 2021, 145, 105618. [Google Scholar] [CrossRef]
- Barua, P.; You, M.P.; Bayliss, K.; Lanoiselet, V.; Barbetti, M.J. A rapid and miniaturized system using Alamar blue to assess fungal spore viability: Implications for biosecurity. Eur. J. Plant Pathol. 2017, 148, 139–150. [Google Scholar] [CrossRef]
- Cox, K.D.; Quello, K.; Deford, R.J.; Beckerman, J.L. A Rapid Method to Quantify Fungicide Sensitivity in the Brown Rot Pathogen Monilinia fructicola. Plant Dis. 2009, 93, 328–331. [Google Scholar] [CrossRef] [Green Version]
- Vega, B.; Liberti, D.; Harmon, P.F.; Dewdney, M.M. A Rapid Resazurin-Based Microtiter Assay to Evaluate QoI Sensitivity for Alternaria alternata Isolates and Their Molecular Characterization. Plant Dis. 2012, 96, 1262–1270. [Google Scholar] [CrossRef] [Green Version]
- Page, B.; Page, M.; Noel, C. A new fluorometric assay for cytotoxicity measurements in-vitro. Int. J. Oncol. 1993, 3, 473–476. [Google Scholar] [CrossRef]
- Mania, D.; Hilpert, K.; Ruden, S.; Fischer, R.; Takeshita, N. Screening for Antifungal Peptides and Their Modes of Action in Aspergillus nidulans. Appl. Environ. Microbiol. 2010, 76, 7102–7108. [Google Scholar] [CrossRef] [Green Version]
- Prakash, G.; Boopathy, M.; Selvam, R.; Kumar, S.J.; Subramanian, K. The effect of anthracene-based chalcone derivatives in the resazurin dye reduction assay mechanisms for the investigation of Gram-positive and Gram-negative bacterial and fungal infection. New J. Chem. 2018, 42, 1037–1045. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Balbaied, T.; Moore, E. Resazurin-Based Assay for Quantifying Living Cells during Alkaline Phosphatase (ALP) Release. Appl. Sci. 2020, 10, 3840. [Google Scholar] [CrossRef]
- Borra, R.C.; Lotufo, M.A.; Gagioti, S.M.; de Mesquita Barros, F.; Andrade, P.M. A simple method to measure cell viability in proliferation and cytotoxicity assays. Braz. Oral Res. 2009, 23, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.Y.K.; Silva, T.C.; Moreira, S.I.; Christiano, F.S.; Gasparoto, M.C.G.; Fraaije, B.A.; Ceresini, P.C. Evidence of Resistance to QoI Fungicides in Contemporary Populations of Mycosphaerella fijiensis, M. musicola and M. thailandica from Banana Plantations in Southeastern Brazil. Agronomy 2022, 12, 2952. [Google Scholar] [CrossRef]
- Ceresini, P.C.; Castroagudín, V.L.; Rodrigues, F.; Rios, J.A.; Aucique-Pérez, C.E.; Moreira, S.I.; Croll, D.; Alves, E.; de Carvalho, G.; Maciel, J.L.N.; et al. Wheat blast: From its origins in South America to its emergence as a global threat. Mol. Plant Pathol. 2019, 20, 155–172. [Google Scholar] [CrossRef]
- Delfino, J.M. ReadPlate, version 3.0; ImageJ Plugin; School of Pharmacy & Biochemistry, University of Buenos Aires: Buenos Aires, Argentina, 2020. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Colzani, H.; Rodrigues, Q.E.A.G.; Fogaça, C.; Gelinski, J.M.L.N.; Pereira-Filho, E.R.; Borges, E.M. Determinação de fosfato em refrigerantes utilizando um scanner de mesa e análise automatizada de dados: Um exemplo didático para ensino de química. Química Nova 2017, 40, 833–839. [Google Scholar] [CrossRef]
- Da Silva, E.K.; dos Santos, V.B.; Resque, I.S.; Neves, C.A.; Moreira, S.G.C.; Franco, M.D.O.K.; Suarez, E.W.T. A fluorescence digital image-based method using a 3D-printed platform and a UV-LED chamber made of polyacid lactic for quinine quantification in beverages. Microchem. J. 2020, 157, 104986. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.I.S.; Bibiano, L.B.J.; Da Silva, G.F.; Hanada, R.E.; Mizubuti, E.S.G. Baseline sensitivity of Brazilian Mycosphaerella fijiensis isolates to protectant and systemic fungicides. Trop. Plant Pathol. 2014, 39, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Dorigan, A.F.; De Carvalho, G.; Poloni, N.M.; Negrisoli, M.M.; Maciel, J.L.N.; Ceresini, P.C. Resistance to triazole fungicides in Pyricularia species associated with invasive plants from wheat fields in Brazil. Acta Sci. Agron. 2019, 41, 39332. [Google Scholar] [CrossRef] [Green Version]
- Brito, F.S.D.; Santos, J.R.P.; Azevedo, V.C.R.; Peixouto, Y.S.; de Oliveira, S.A.; Ferreira, C.F.; Haddad, F.; Amorim, E.P.; Fraaije, B.; Miller, R.N.G. Genetic Diversity and Azole Fungicide Sensitivity in Pseudocercospora musae Field Populations in Brazil. Front. Microbiol. 2020, 11, 99. [Google Scholar] [CrossRef] [Green Version]
- Vicentini, S.N.C.; Moreira, S.I.; da Silva, A.G.; de Oliveira, T.Y.K.; Silva, T.C.; Junior, F.G.A.; Krug, L.D.; de Paiva Custódio, A.A.; Júnior, R.P.L.; Teodoro, P.E.; et al. Efflux Pumps and Multidrug-Resistance in Pyricularia oryzae Triticum Lineage. Agronomy 2022, 12, 2068. [Google Scholar] [CrossRef]
- Peláez Montoya, J.E.; Vásquez David, L.E.; Diaz Brito, T.J.; Castañeda Sánchez, D.A.; Rodríguez Beltrán, E.; Arango Isaza, R.E. Use of a Micro Title Plate Dilution Assay to Measure Activity of Antifungal Compounds against Mycosphaerella Fijiensis. Rev. Fac. Nac. Agron. Medellín 2006, 59, 3425–3433. [Google Scholar]
- Vargas, M.H. ED50plus v1.0. Available online: https://archive.org/details/ed50v10_zip (accessed on 2 March 2022).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Bruce, P.C.; Bruce, A.; Gedeck, P. Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2020; ISBN 978-1-4920-7289-8. [Google Scholar]
- Leslie, J.F.; Summerell, B.A.; Bullock, S. The Fusarium Laboratory Manual; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 978-0-470-27646-4. [Google Scholar]
- Hanada, R.E.; Gasparotto, L.; Pereira, J.C.R. Esporulação de Mycosphaerella fijiensis em diferentes meios de cultura. Fitopatol. Bras. 2002, 27, 170–173. [Google Scholar] [CrossRef] [Green Version]
- Parker, R.W.; Wilson, D.J.; Mace, C.R. Open software platform for automated analysis of paper-based microfluidic devices. Sci. Rep. 2020, 10, 11284. [Google Scholar] [CrossRef]
- Shah, M.M.; Ren, W.; Irudayaraj, J.; Sajini, A.A.; Ali, M.I.; Ahmad, B. Colorimetric Detection of Organophosphate Pesticides Based on Acetylcholinesterase and Cysteamine Capped Gold Nanoparticles as Nanozyme. Sensors 2021, 21, 8050. [Google Scholar] [CrossRef]
- Hwang, J.; Kwon, D.; Lee, S.; Jeon, S. Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters. RSC Adv. 2016, 6, 48445–48448. [Google Scholar] [CrossRef]
- Tian, Z.; Liu, L.Q.; Peng, C.; Chen, Z.; Xu, C. A new development of measurement of 19-Nortestosterone by combining immunochromatographic strip assay and ImageJ software. Food Agric. Immunol. 2009, 20, 1–10. [Google Scholar] [CrossRef]
- Amaral, C.; Antunes, W.; Moe, E.; Duarte, A.G.; Lima, L.M.P.; Santos, C.; Gomes, I.L.; Afonso, G.S.; Vieira, R.; Teles, H.S.S.; et al. A molecular test based on RT-LAMP for rapid, sensitive and inexpensive colorimetric detection of SARS-CoV-2 in clinical samples. Sci. Rep. 2021, 11, 16430. [Google Scholar] [CrossRef]
- Callegari-Jacques, S.M. Bioestatística: Princípios e Aplicações; Artmed: Porto Alegre, RS, Brazil, 2007; ISBN 978-85-363-0092-4. [Google Scholar]
- Chitolina, G.M.; Silva-Junior, G.J.; Feichtenberger, E.; Pereira, R.G.; Amorim, L. Distribution of Alternaria alternata isolates with resistance to quinone outside inhibitor (QoI) fungicides in Brazilian orchards of tangerines and their hybrids. Crop. Prot. 2021, 141, 105493. [Google Scholar] [CrossRef]
- Maia, J.N.; Beger, G.; Pereira, W.V.; De Mio, L.L.M.; da Silva Silveira Duarte, H. Gray mold in strawberries in the Paraná state of Brazil is caused by Botrytis cinerea and its isolates exhibit multiple-fungicide resistance. Crop. Prot. 2021, 140, 105415. [Google Scholar] [CrossRef]
- Moreira, R.R.; Hamada, N.A.; Peres, N.A.; De Mio, L.L.M. Sensitivity of the Colletotrichum acutatum Species Complex from Apple Trees in Brazil to Dithiocarbamates, Methyl Benzimidazole Carbamates, and Quinone Outside Inhibitor Fungicides. Plant Dis. 2019, 103, 2569–2576. [Google Scholar] [CrossRef]
- Dias, M.D.; Dias-Neto, J.J.; Santos, M.D.; Formento, A.N.; Bizerra, L.V.; Fonseca, M.E.N.; Boiteux, L.S.; Café-Filho, A.C. Current Status of Soybean Anthracnose Associated with Colletotrichum truncatum in Brazil and Argentina. Plants 2019, 8, 459. [Google Scholar] [CrossRef] [Green Version]
- Boufleur, T.R.; Ciampi-Guillardi, M.; Tikami, Í.; Rogério, F.; Thon, M.R.; Sukno, S.A.; Júnior, N.S.M.; Baroncelli, R. Soybean anthracnose caused by Colletotrichum species: Current status and future prospects. Mol. Plant Pathol. 2021, 22, 393–409. [Google Scholar] [CrossRef]
- De Mello, F.E.; Lopes-Caitar, V.S.; Xavier-Valencio, S.A.; da Silva, H.P.; Franzenburg, S.; Mehl, A.; Verreet, J.; Balbi-Peña, M.I.; Marcelino-Guimaraes, F.C.; Godoy, C.V. Resistance of Corynespora cassiicola from soybean to QoI and MBC fungicides in Brazil. Plant Pathol. 2022, 71, 373–385. [Google Scholar] [CrossRef]
- Li, Y.; Tsuji, S.S.; Hu, M.; Câmara, M.P.S.; Michereff, S.J.; Schnabel, G.; Chen, F. Characterization of difenoconazole resistance in Lasiodiplodia theobromae from papaya in Brazil. Pest Manag. Sci. 2020, 76, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Dutra, P.S.S.; Lichtemberg, P.D.S.F.; Martinez, M.B.; Michailides, T.J.; De Mio, L.L.M. Cross-Resistance Among Demethylation Inhibitor Fungicides with Brazilian Monilinia fructicola Isolates as a Foundation to Discuss Brown Rot Control in Stone Fruit. Plant Dis. 2020, 104, 2843–2850. [Google Scholar] [CrossRef] [PubMed]
- Possiede, Y.; Gabardo, J.; Kava-Cordeiro, V.; Galli-Terasawa, L.; Azevedo, J.; Glienke, C. Fungicide resistance and genetic variability in plant pathogenic strains of Guignardia citricarpa. Braz. J. Microbiol. 2009, 40, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathioni, S.M.; de Mello, F.E.; Antunes, R.F.D.; Duvaresch, D.L.; Milanesi, D.F.; Brommonschenkel, S.H.; Pinho, D.B.; Rosa, D.D. Species Determination and CYTB-G143A Monitoring of Ramulariopsis spp. Isolated from Cotton in Brazil. Plant Health Prog. 2022, 23, 4–6. [Google Scholar] [CrossRef]
Fungicide Group and Active Ingredient | Mycosphaerella Isolates a, b | Doses of Fungicide Tested (μg mL−1) c | Pyricularia Isolates a,b | Doses of Fungicide Tested (μg mL−1) c |
---|---|---|---|---|
QoI: Azoxystrobin | Mm ISC3 (S) Mm ISC14 (S) Mf JA3.9a (S) Mm ISC9 (R) Mm ISC64 (R) Mf JA2.24 (R) | 0 and 10.0 | PoTl 12.1.312 (R) PoTl 18SPK6 (R) PoTl 18MGH19 (R) PoTl 12.1.015 (S) PoO 421 (S) PoO 656 (S) | 0 and 10.0 |
DMI: Tebuconazole | Mm ISR47 (S) Mm ISR55 (S) Mf JA2.24 (RS) Mm ISC118 (R) Mf JA3.9a (R) Mf SA6 (R) | 0, 0.0066, 0.033, 0.066, 0.132 and 1.320 | PoTl 12.1.130 (R) PoTl 12.1.183 (R) PoTl 12.1.312 (HR) PoTl 12.1.045i (RS) PoTl 18MGF3 (R) PoTl 18MGH25 (RS) | 0 and 1.0 |
SDHI: Fluxapyroxad | Mm ISC92 (S) Mm ISR21 (RS) Mf JA2.24 (RS) Mf SA6 (RS) Mm ISR6 (R) Mf JA3.9a (HR) | 0, 0.66, 3.3, 6.6, 16.5 and 33.0 | PoTl 12.1.037 (R) PoTl 12.1.299 (S) PoTl 12.1.312 (S) PoTl 12.1.045i (S) PoTl 18SPK6 (S) PoO 704 (S) | 0 and 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, T.C.; Moreira, S.I.; Assis, F.G., Jr.; Vicentini, S.N.C.; Silva, A.G.; Oliveira, T.Y.K.; Christiano, F.S., Jr.; Custódio, A.A.P.; Leite, R.P., Jr.; Gasparoto, M.C.G.; et al. An Accurate, Affordable, and Precise Resazurin-Based Digital Imaging Colorimetric Assay for the Assessment of Fungicide Sensitivity Status of Fungal Populations. Agronomy 2023, 13, 343. https://doi.org/10.3390/agronomy13020343
Silva TC, Moreira SI, Assis FG Jr., Vicentini SNC, Silva AG, Oliveira TYK, Christiano FS Jr., Custódio AAP, Leite RP Jr., Gasparoto MCG, et al. An Accurate, Affordable, and Precise Resazurin-Based Digital Imaging Colorimetric Assay for the Assessment of Fungicide Sensitivity Status of Fungal Populations. Agronomy. 2023; 13(2):343. https://doi.org/10.3390/agronomy13020343
Chicago/Turabian StyleSilva, Tatiane Carla, Silvino Intra Moreira, Fabio Gomes Assis, Jr., Samara Nunes Campos Vicentini, Abimael Gomes Silva, Tamiris Yoshie Kitayama Oliveira, Félix Sebastião Christiano, Jr., Adriano Augusto Paiva Custódio, Rui Pereira Leite, Jr., Maria Cândida Godoy Gasparoto, and et al. 2023. "An Accurate, Affordable, and Precise Resazurin-Based Digital Imaging Colorimetric Assay for the Assessment of Fungicide Sensitivity Status of Fungal Populations" Agronomy 13, no. 2: 343. https://doi.org/10.3390/agronomy13020343
APA StyleSilva, T. C., Moreira, S. I., Assis, F. G., Jr., Vicentini, S. N. C., Silva, A. G., Oliveira, T. Y. K., Christiano, F. S., Jr., Custódio, A. A. P., Leite, R. P., Jr., Gasparoto, M. C. G., de Jesus, W. C., Jr., & Ceresini, P. C. (2023). An Accurate, Affordable, and Precise Resazurin-Based Digital Imaging Colorimetric Assay for the Assessment of Fungicide Sensitivity Status of Fungal Populations. Agronomy, 13(2), 343. https://doi.org/10.3390/agronomy13020343