Change of Physiological Properties and Ion Distribution by Synergistic Effect of Ca2+ and Grafting under Salt Stress on Cucumber Seedlings
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Experiment Design
2.2. Osmotic Adjustment Substances, Enzyme Activities, and Salt Damage Score
2.3. Cucumber Seedling Growth and Na+, Ca2+, and K+ Distributions
2.4. Principal Component Analysis
2.5. Statistical Analysis
3. Results
3.1. Cucumber Seedling Growth
3.2. Enzyme Activities and Osmotic Adjustment Substances
3.3. Injury Degree and Salt Damage Score
3.4. Na+, Ca2+, and K+ Content Distribution in Plants
3.5. K+/Na+ and Ca2+/Na+ in Various Parts of Cucumber Seedlings
3.6. PCA
4. Discussion
4.1. Effects of Grafting and Ca2+ on Oxidization System
4.2. Effects of Grafting and Ca2+ on Salt Damage Score
4.3. Effects of Grafting and Ca2+ on Ion Absorption and Distribution
4.4. Effects of Grafting and Ca2+ on Plant Growth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Türkan, I.; Demiral, T. Recent developments in understanding salinity tolerance. Environ. Exp. Bot. 2009, 67, 2–9. [Google Scholar] [CrossRef]
- Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Maximova, E.; Fuggi, A.; Carillo, P. Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose. Front. Plant Sci. 2016, 7, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Butcher, K.; Wick, A.F.; Desutter, T.; Chatterjee, A.; Harmon, J. Soil salinity: A threat to global food security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Feng, L.; Xu, W.; Sun, N.; Mandal, S.; Wang, H.; Geng, Z. Efficient improvement of soil salinization through phytoremediation induced by chemical remediation in extreme arid land northwest China. Int. J. Phytoremediat. 2019, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.F.; Guo, S.R.; Jiao, Y.S.; Zhang, R.H. The effects of exogenous nitric oxide on growth, active oxygen metabolism and photosynthetic characteristics in cucumber seedling under NaCl stress. Front. Agric. China 2007, 1, 308–314. [Google Scholar] [CrossRef]
- Bot, P.J.; Abbasi, G.H.; Akhtar, J.; Anwar-Ul-Haq, M.; Malik, W. Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pak. J. Bot. 2015, 46, 135–146. [Google Scholar]
- Petronia, C.; Chiara, C.; Veronica, D.M.; Carmen, A.; Stefania, D.P.; Youssef, R. Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. Trained to different canopy shapes. Agric. Water Manag. 2018, 212, 12–22. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Salahshoor, F.; Kazemi, F. Effect of calcium on reducing salt stress in seed germination and early growth stage of Festuca ovina L. Plant Soil Environ. 2016, 62, 460–466. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, J.Z.; Chen, X.H. Effect of durative low temprature on morphological and physiological characteristics of cucumber seedling. North. Hortic. 2010, 16, 1–3. [Google Scholar]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 2012, 32, 181–200. [Google Scholar] [CrossRef]
- Rahnama, A.; James, R.A.; Poustini, K.; Munns, R. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct. Plant Biol. 2010, 37, 255–263. [Google Scholar] [CrossRef]
- Deb, S.K.; Sharma, P.; Shukla, M.K.; Sammis, T.W.; Ashigh, J. Drip-irrigated Pecan Seedlings Response to Irrigation Water Salinity. Hortscience 2013, 48, 1548–1555. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef] [PubMed]
- Porcel, R.; Aroca, R.; Azcon, R.; Ruiz-Lozano, J.M. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 2016, 26, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Almeida, D.M.; Oliveira, M.M.; Saibo, N.J. Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genet. Mol. Biol. 2017, 40, 326–345. [Google Scholar] [CrossRef] [PubMed]
- Saied, A.S.; Keutgen, A.J.; Noga, G. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’ and ‘Korona’. Sci. Hortic. 2005, 103, 289–303. [Google Scholar] [CrossRef]
- Youssef, R.; Kyriacou, M.C.; Giuseppe, C. Vegetable Grafting: A Toolbox for Securing Yield Stability under Multiple Stress Conditions. Front. Plant Sci. 2017, 8, 2255. [Google Scholar] [CrossRef]
- Huang, Y.; Bie, Z.; He, S.; Hua, B.; Zhen, A.; Liu, Z. Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environ. Exp. Bot. 2010, 69, 32–38. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Leonardi, C.; Bie, Z. Role of grafting in vegetable crops grown under saline conditions. Sci. Hortic. 2010, 127, 147–155. [Google Scholar] [CrossRef]
- Savvas, D.; Öztekin, G.B.; Tepecik, M.; Ropokis, A.; Tüzel, Y.; Ntatsi, G.; Schwarz, D. Impact of grafting and rootstock on nutrient-to-water uptake ratios during the first month after planting of hydroponically grown tomato. J. Hortic. Sci. Biotechnol. 2017, 92, 294–302. [Google Scholar] [CrossRef]
- Plaut, Z.; Edelstein, M.; Ben-Hur, M. Overcoming salinity barriers to crop production using traditional methods. Crit. Rev. Plant Sci. 2013, 32, 250–291. [Google Scholar] [CrossRef]
- Cha-Um, S.; Singh, H.P.; Samphumphuang, T.; Kirdmanee, C. Calcium-alleviated salt tolerance in indica rice (‘Oryza sativa’ L. spp. ‘indica’): Physiological and morphological changes. Aust. J. Crop Sci. 2012, 6, 176–182. [Google Scholar]
- Liu, G. Role of nitric oxide and calcium signaling in oxalate-induced resistance of cucumber leaves to Pseudoperonospora cubensis. Acta Bot. Boreali Occident. Sin. 2019, 32, 969–974. [Google Scholar]
- Roy, P.R.; Tahjib-Ul-Arif, M.; Polash, M.A.S.; Hossen, M.Z.; Hossain, M.A. Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiol. Mol. Biol. Plants 2019, 25, 611–624. [Google Scholar] [CrossRef]
- Per, T.S.; Khan, N.A.; Reddy, P.S.; Masood, A.; Hasanuzzaman, M.; Khan, M.I.R.; Anjum, N.A. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem. 2017, 115, 126–140. [Google Scholar] [CrossRef]
- Tang, R.J.; Zhao, F.G.; Garcia, V.J.; Kleist, T.J.; Yang, L.; Zhang, H.X.; Luan, S. Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2015, 112, 3134–3139. [Google Scholar] [CrossRef]
- Lei, B.; Huang, Y.; Xie, J.J.; Liu, Z.X.; Zhen, A.; Fan, M.L.; Bie, Z.L. Increased cucumber salt tolerance by grafting on pumpkin rootstock and after application of calcium. Biol. Plant. 2013, 58, 179–184. [Google Scholar] [CrossRef]
- Moez, H.; Chantal, E.; Mariama, N.; Laurent, L.; Khaled, M. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Front. Plant Sci. 2016, 7, 1787. [Google Scholar] [CrossRef]
- Chen, G.; Wang, R. Effects of salinity on growth and concentrations of sodium, potassium, and calcium in grafted cucumber seedlings. Acta Hortic. 2008, 771, 217–224. [Google Scholar] [CrossRef]
- Alizadeh, M.; Singh, S.K.; Patel, V.B.; Bhattacharya, R.C.; Yadav, B.P. In vitro responses of grape rootstocks to NaCl. Biol. Plant. 2010, 54, 381–385. [Google Scholar] [CrossRef]
- Feng, G.J. Plant Physiology Experiment Guide, 3rd ed.; Higher Education Press: Beijing, China, 2006; pp. 87–92. [Google Scholar]
- Zhong, X.; Lin, L.; Liang, H. The improvement of electric conductivity method-the measurement of hurt degree of plant tissue under stress. J. Biol. 2003, 20, 45–63. [Google Scholar]
- Kingsbury, R.W.; Epstein, E.; Pearcy, R.W. Physiological responses to salinity in selected lines of wheat. Plant Physiol. 1984, 74, 417–423. [Google Scholar] [CrossRef]
- Baligar, V.C.; Schaffert, R.E.; Santos, H.L.D.; Pitta, G.V.E.; Filho, A.F.D.C.B. Growth and Nutrient Uptake Parameters in Sorghum as Influenced by Aluminum. Agron. J. 1993, 85, 1068–1074. [Google Scholar] [CrossRef]
- Li, G.; Wang, W.; Chen, Z.; Hu, Z.; Leng, P. Effect of calcium on ion contents in different organs and absorption of K+ and Na+ in the root tips of Mesembryanthemum crystallinum L. under NaCl stress. Plant Soil Environ. 2018, 36, 282–290. [Google Scholar]
- Chaturvedi, K.; Sharma, N.; Yadav, S.K. Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. Int. J. Biol. Macromol. 2019, 133, 284–293. [Google Scholar] [CrossRef]
- Albacete, A.; Martinez-Andujar, C.; Ghanem, M.E.; Acosta, M.; Sanchez-Bravo, J.; Asins, M.J.; Cuartero, J.; Lutts, S.; Dodd, I.C.; Perez-Alfocea, F. Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant Cell Environ. 2010, 32, 928–938. [Google Scholar] [CrossRef]
- Huang, W.; Liao, S.; Lv, H.; Khaldun, A.B.M.; Wang, Y. Characterization of the growth and fruit quality of tomato grafted on a woody medicinal plant, Lycium chinense. Sci. Hortic. 2015, 197, 447–453. [Google Scholar] [CrossRef]
- Brookes, P.S. Calcium, ATP and ROS: A mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 2004, 287, C817–C833. [Google Scholar] [CrossRef]
- Tian, X.; He, M.; Wang, Z.; Zhang, J.; Song, Y.; He, Z.; Dong, Y. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regul. 2015, 77, 343–356. [Google Scholar] [CrossRef]
- Fan, H.F.; Guo, S.R.; Jiao, Y.S.; Zhang, R.H.; Li, J. Ameliorating effects of exogenous Ca2+ on foxtail millet seedlings under salt stress. Funct. Plant Biol. 2019, 46, 407–416. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Singer, J.W.; Fessehaie, A.; Krebs, S.L.; Arora, R. Seasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and non-thermonastic Rhododendron species: A comparison of photoprotective strategies in overwintering plants. Plant Sci. 2009, 177, 607–617. [Google Scholar] [CrossRef]
- Li, L.; Zhu, T.; Liu, J.; Zhao, C.; Li, L.; Chen, M. An orthogonal test of the effect of NO3−, PO43−, K+, and Ca2+ on the growth and ion absorption of Elaeagnus angustifolia L. seedlings under salt stress. Acta Physiol. Plant. 2019, 41, 1–11. [Google Scholar] [CrossRef]
- Chen, X.J.; Chen, G.; Chang, X.C.; Tursun, Z.; Jian-Ping, L.I.; Hao, X.Y.; Gao, S.Q.; Huang, Q.S. Physiological Response Mechanism of Corn Seedlings under Salt. Acta Agric. Zhejiangensis 2020, 32, 1141–1148. [Google Scholar] [CrossRef]
- Fan, M.; Bie, Z.; Krumbein, A.; Schwarz, D. Salinity stress in tomatoes can be alleviated by grafting and potassium depending on the rootstock and K-concentration employed. Sci. Hortic. 2011, 130, 615–623. [Google Scholar] [CrossRef]
- Grigore, M.N.; Boscaiu, M.; Llinares, J.; Vicente, O. Mitigation of Salt Stress-Induced Inhibition of Plantago crassifolia Reproductive Development by Supplemental Calcium or Magnesium. Not. Bot. Horti Agrobot. Cluj Napoca 2012, 40, 58–66. [Google Scholar] [CrossRef][Green Version]
- Saeidi-Sar, S.; Abbaspour, H.; Afshari, H.; Yaghoobi, S.R. Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiol. Plant. 2013, 35, 667–677. [Google Scholar] [CrossRef]
- Liu, J.; Niu, Y.; Zhang, J.; Zhou, Y.; Ma, Z.; Huang, X. Ca2+ channels and Ca2+ signals involved in abiotic stress responses in plant cells: Recent advances. Plant Cell Tissue Organ Cult. 2018, 132, 413–424. [Google Scholar] [CrossRef]
- Qian, H.F.; Peng, X.F.; Han, X.; Ren, J.; Zhan, K.Y.; Zhu, M. The stress factor, exogenous ascorbic acid, affects plant growth and the antioxidant system in Arabidopsis thaliana. Russ. J. Plant Physiol. 2014, 61, 467–475. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Cheng, Y.; Zhou, T.; Duan, X.; Gong, M.; Zou, Z. Generation of reactive oxygen species and their functions and deleterious effects in plants. Acta Bot. Boreali Occident. Sin. 2014, 34, 1916–1926. [Google Scholar]
- Huang, Y.; Bie, Z.; Liu, P.; Niu, M.; Zhen, A.; Liu, Z.; Lei, B.; Gu, D.; Lu, C.; Wang, B. Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Sci. Hortic. 2013, 149, 47–54. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, Y.; Chun-Mei, H.; Liu, Z.; Wei, G. Effects of Salt Stress on Biomass Formation and Ion Partition in Hydroponicaly—Cultured Grafted Cucumber. Acta Bot. Boreali Occident. Sin. 2006, 26, 2500–2505. [Google Scholar]
- Zhu, S.; Guo, S. Effects of grafting on K+, Na+ contents and distribution of watermelon (Citrullus vulgaris Schrad.) seedlings under salt stress. Acta Hortic. Sin. 2009, 36, 814–820. [Google Scholar] [CrossRef]
- Anisur, R.; Kamrun, N.; Mirza, H.; Masayuki, F. Calcium Supplementation Improves Na+/K+ Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings. Front. Plant Sci. 2016, 7, 609. [Google Scholar] [CrossRef]
- Cuin, T.A.; Betts, S.A.; Chalmandrier, R.; Shabala, S. A root’s ability to retain K+ correlates with salt tolerance in wheat. J. Exp. Bot. 2008, 59, 2697–2706. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Jawad, R.; Kumar, P.; Rea, E.; Cardarelli, M. The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. Hortic. 2013, 164, 380–391. [Google Scholar] [CrossRef]
- Gong, B.; Li, X.; Vandenlangenberg, K.M.; Wen, D.; Sun, S.; Wei, M.; Li, Y.; Yang, F.; Shi, Q.; Wang, X. Overexpression of S-adenosyl-l-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol. J. 2014, 12, 694–708. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Y.P.; Ye, J.; Gao, W.; Qiao, Y.J.; Dai, C.J.; Zhao, Y.X.; Shi, S.J. Effects of exogenous Ca2+ on stomatal traits, photosynthesis, and biomass of maize seedings under salt stress. Chin. J. Appl. Ecol. 2019, 30, 923–930. [Google Scholar] [CrossRef]
Characteristics | G | Ca2+ | G × Ca2+ |
---|---|---|---|
Osmotic adjustment substance and enzyme activity-related parameters | |||
Pro | 55,759.14 ** | 1620.07 ** | 4880.21 * |
MDA | 17.86 ** | 367.62 ** | 78.03 ** |
Soluble sugar | 31.27 ** | 143.01 ** | 85.71 ** |
SOD | 6861.4 ** | 4167.56 ** | 2808.94 ** |
POD | 83.92 ** | 237.95 ** | 100.22 ** |
Relative electrical conductivity | 54,472.57 ** | 400.83 ** | 390.81 ** |
Injury degree | 26,425.11 ** | 1195.94 ** | 1164.35 ** |
Salt damage score | 47.87 ** | 34.58 ** | 5.35 ** |
Ion distribution-related parameters | |||
Na+ of pumpkin root | 6631.15 ** | 50.09 ** | 50.09 ** |
Na+ of pumpkin stem | 477.15 ** | 10.55 ** | 10.55 ** |
Na+ of cucumber stem | 49.33 ** | 16.01 ** | 14.51 ** |
Na+ of cucumber leaf | 38.57 ** | 40.03 ** | 20.16 ** |
K+ of pumpkin root | 799.34 ** | 27.21 ** | 27.21 ** |
K+ of pumpkin stem | 1754.35 ** | 133.78 ** | 133.78 ** |
K+ of cucumber stem | 203.16 ** | 39.21 ** | 25.09 ** |
K+ of cucumber leaf | 23.56 ** | 25.26 ** | 9.11 ** |
Ca2+ of pumpkin root | 60.11 ** | 2.34 ns | 2.34 ns |
Ca2+ of pumpkin stem | 771.85 ** | 20.22 ** | 20.22 ** |
Ca2+ of cucumber stem | 23.75 ** | 11.11 ** | 5.51 * |
Ca2+ of cucumber leaf | 4.25 * | 2.47 * | 4.56 * |
Na+ of cucumber root | 176.38 ** | 2.48 ** | 6.1 ** |
K+ of cucumber root | 184.52 ** | 2.49 * | 4.58 * |
Ca2+ of cucumber root | 51.3 ** | 2.50 ns | 2.11 ns |
K+/Na+ of cucumber leaf | 148.21 ** | 7.44 ** | 4.56 ** |
K+/Ca2+ of cucumber leaf | 127.59 ** | 5.66 * | 3.84 * |
Plant growth-related parameters | |||
Shoot biomass | 82.36 ** | 73.21 ** | 26.85 ** |
Root biomass | 19.29 ** | 2.51 ns | 2.92 ns |
Plant height relative growth rate | 520.42 ** | 182.97 ** | 329.32 ** |
Stem volume relative growth rate | 774.35 ** | 989.66 ** | 865.34 ** |
Ion Ratio | Treatment | Pumpkin Root | Pumpkin Stem | Cucumber Root | Cucumber Stem | Cucumber Leaf |
---|---|---|---|---|---|---|
CK | 0.74 ± 0.02 a | 3.35 ± 0.02 a | 11.46 ± 0.28 a | 15 ± 0.49 a | ||
NG | 1.36 ± 0.02 a | 2.41 ± 0.01 d | 1.37 ± 0.01 d | |||
0 | 0.3 ± 0.02b c | 0.8 ± 0.01 c | 0.67 ± 0.01 e | 0.77 ± 0.01d ef | ||
K+/Na+ | 5 | 0.16 ± 0.12 c | 0.42 ± 0.29 cd | 0.67 ± 0.46 e | 0.58 ± 0.39 de | |
10 | 0.26 ± 0.01 c | 0.45 ± 0.02 d | 3.36 ± 0.08 c | 2.07 ± 0.04 c | ||
15 | 0.27 ± 0.01 c | 0.44 ± 0.01 d | 0.51 ± 0.01 e | 0.47 ± 0.01 ef | ||
20 | 0.79 ± 0.01 a | 0.05 ± 0.01 e | 2.21 ± 0.02 d | 0.2 ± 0.01 f | ||
30 | 0.42 ± 0.01 b | 1.61 ± 0.01 b | 4.76 ± 0.09 b | 4.21 ± 0.06 b | ||
CK | 0.29 ± 0.01 c | 0.45 ± 0.01 a | 1.99 ± 0.05 a | 12.83 ± 1.06 a | ||
NG | 1.78 ± 0.02 a | 0.5 ± 0.06 c | 1.5 ± 0.05 d | |||
0 | 0.23 ± 0.01 d | 0.16 ± 0.57 a | 0.23 ± 0.03 d | 0.77 ± 0.04 d | ||
Ca2+/Na+ | 5 | 0.11 ± 0 f | 0.14 ± 0.01 a | 0.26 ± 0.03 d | 0.97 ± 0.04 d | |
10 | 0.18 ± 0.01 e | 0.51 ± 0.01 a | 0.46 ± 0.04 c | 3.88 ± 0.05 c | ||
15 | 0.7 ± 0.01 a | 0.17 ± 0.01 a | 0.32 ± 0.02 d | 0.62 ± 0.01 d | ||
20 | 0.35 ± 0.02 b | 0.26 ± 0.01 a | 0.73 ± 0.03 b | 1.5 ± 0.01 d | ||
30 | 0.23 ± 0.01 d | 0.4 ± 0.01 a | 1.9 ± 0.06 a | 8.48 ± 0.02 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lan, Z.; Tian, L.; Li, J.; Yang, G.; Gao, Y.; Zhang, X. Change of Physiological Properties and Ion Distribution by Synergistic Effect of Ca2+ and Grafting under Salt Stress on Cucumber Seedlings. Agronomy 2021, 11, 848. https://doi.org/10.3390/agronomy11050848
Wang X, Lan Z, Tian L, Li J, Yang G, Gao Y, Zhang X. Change of Physiological Properties and Ion Distribution by Synergistic Effect of Ca2+ and Grafting under Salt Stress on Cucumber Seedlings. Agronomy. 2021; 11(5):848. https://doi.org/10.3390/agronomy11050848
Chicago/Turabian StyleWang, Xiaodong, Zhiqian Lan, Lei Tian, Jianshe Li, Guankai Yang, Yanming Gao, and Xueyan Zhang. 2021. "Change of Physiological Properties and Ion Distribution by Synergistic Effect of Ca2+ and Grafting under Salt Stress on Cucumber Seedlings" Agronomy 11, no. 5: 848. https://doi.org/10.3390/agronomy11050848
APA StyleWang, X., Lan, Z., Tian, L., Li, J., Yang, G., Gao, Y., & Zhang, X. (2021). Change of Physiological Properties and Ion Distribution by Synergistic Effect of Ca2+ and Grafting under Salt Stress on Cucumber Seedlings. Agronomy, 11(5), 848. https://doi.org/10.3390/agronomy11050848