Effects of the Double-Cutting Method for Ratooning Rice in the SALIBU System under Different Soil Moisture Conditions on Grain Yield and Regeneration Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field Using Concrete Tanks
2.2. Cropping Schedules
2.3. Plot Design and Treatments
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Soil Moisture Regimes
3.2. Effect of Cutting and Soil Moisture Regime on Regeneration Rate
3.3. Effect of Cutting and Soil Moisture Regime on Yield Components, Grain Yield, and Harvest Index
3.4. Comparison of Yield Performance of the Crops
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Crop | Treatment | Plant Height | No. of Tillers | No. of Panicles | No. of Spikelets | Filled Grains | 1000-Grain Weight | Grain Yield | Harvest Index | |
---|---|---|---|---|---|---|---|---|---|---|
Cut | Moist | cm | m−2 | m−2 | Panicle−1 | % | g | g m−2 | ||
Main crop 1 | 95 ± 3 | 18 ± 2 | 394 ± 47 | 138 ± 14 | 61 ± 8 | 21.0 ± 0.5 | 461 ± 125 | 0.44 ± 0.06 | ||
Ratoon 1-1 | SC | M1 | 101 ± 2 ab | 18 ± 3 | 473 ± 40 ab | 80 ± 6 | 59 ± 7 ab | 23.1 ± 0.7 a | 418 ± 51 b | 0.43 ± 0.08 |
M1.5 | 96 ± 3 b | 20 ± 3 | 503 ± 8 ab | 79 ± 7 | 52 ± 5 b | 22.9 ± 0.8 a | 459 ± 56 ab | 0.38 ± 0.1 | ||
M2 | 97 ± 3 b | 22 ± 2 | 530 ± 38 a | 71 ± 9 | 57 ± 5 ab | 22.8 ± 0.6 a | 479 ± 32 ab | 0.37 ± 0.03 | ||
DC | M1 | 103 ± 1 a | 18 ± 2 | 458 ± 35 b | 87 ± 5 | 49 ± 5 b | 21.5 ± 0.9 a | 389 ± 28 b | 0.34 ± 0.05 | |
M1.5 | 99 ± 3 ab | 17 ± 2 | 451 ± 28 b | 74 ± 13 | 53 ± 5 ab | 22.9 ± 0.9 a | 421 ± 88 b | 0.36 ± 0.05 | ||
M2 | 99 ± 1 ab | 19 ± 3 | 480 ± 25 ab | 83 ± 5 | 66 ± 7 a | 22.1 ± 0.7 a | 576 ± 72 a | 0.43 ± 0.05 | ||
Cutting (C) | * | ns | ** | ns | ns | * | ns | ns | ||
Moisture (M) | ** | ns | ns | ns | * | ns | ** | ns | ||
C × M | ns | ns | ns | ns | * | ns | ns | ns | ||
Main crop 2 | 86 ± 3 | 16 ± 2 | 324 ± 23 | 120 ± 12 | 60 ± 7 | 22.1 ± 0.7 | 503 ± 51 | 0.48 ± 0.08 | ||
Ratoon 2-1 | SC | M1 | 56 ± 1 | 34 ± 10 | 478 ± 65 | 76 ± 3 a | 27 ± 8 a | 18.6 ± 0.6 | 170 ± 53 c | 0.27 ± 0.08 |
M2 | 56 ± 1 | 32 ± 2 | 524 ± 67 | 72 ± 11 a | 33 ± 12 a | 18.9 ± 0.6 | 223 ± 54 ac | 0.34 ± 0.07 | ||
M3 | 56 ± 1 | 27 ± 8 | 443 ± 67 | 64 ± 7 a | 38 ± 10 a | 18.6 ± 0.3 | 284 ± 52 ab | 0.34 ± 0.09 | ||
DC | M1 | 56 ± 0 | 29 ± 5 | 498 ± 85 | 71 ± 3 a | 27 ± 5 a | 19.1 ± 0.5 | 194 ± 15 bc | 0.34 ± 0.07 | |
M2 | 56 ± 0 | 31 ± 6 | 463 ± 107 | 68 ± 5 a | 45 ± 8 a | 19.1 ± 0.4 | 262 ± 20 ac | 0.40 ± 0.09 | ||
M3 | 57 ± 1 | 29 ± 6 | 556 ± 77 | 64 ± 3 a | 41 ± 8 a | 18.2 ± 0.3 | 308 ± 44 a | 0.38 ± 0.09 | ||
Cutting (C) | ns | ns | ns | ns | ns | ns | ns | ns | ||
Moisture (M) | ns | ns | ns | * | * | ns | *** | ns | ||
C × M | ns | ns | ns | ns | ns | ns | ns | ns | ||
Ratoon 2-2 | SC | M1 | 59 ± 6 | 26 ± 6 a | 417 ± 54 | 53 ± 5 | 52 ± 15 a | 18.1 ± 0.5 a | 223 ± 53 c | 0.40 ± 0.14 |
M2 | 61 ± 2 | 20 ± 3 a | 423 ± 64 | 59 ± 1 | 68 ± 6 a | 18.1 ± 0.2 a | 315 ± 69 ab | 0.49 ± 0.11 | ||
M3 | 66 ± 5 | 20 ± 2 a | 475 ± 43 | 68 ± 8 | 65 ± 10 a | 18.2 ± 0.6 a | 380 ± 65 ab | 0.51 ± 0.08 | ||
DC | M1 | 59 ± 3 | 22 ± 3 a | 384 ± 69 | 60 ± 14 | 50 ± 5 a | 17.8 ± 0.6 a | 166 ± 35 bc | 0.42 ± 0.04 | |
M2 | 60 ± 3 | 20 ± 2 a | 402 ± 64 | 62 ± 11 | 57 ± 12 a | 17.5 ± 0.5 a | 221 ± 76 ac | 0.45 ± 0.04 | ||
M3 | 60 ± 1 | 19 ± 4 a | 423 ± 96 | 67 ± 13 | 67 ± 9 a | 17.1 ± 0.4 a | 299 ± 86 a | 0.49 ± 0.08 | ||
Cutting (C) | ns | ns | ns | ns | ns | ** | * | ns | ||
Moisture (M) | ns | * | ns | ns | * | ns | ** | ns | ||
C × M | ns | ns | ns | ns | ns | ns | ns | ns |
References
- Mengel, D.B.; Wilson, E.F. Water management and nitrogen fertilization of ratoon crop rice. Agron. J. 1981, 73, 1008–1010. [Google Scholar] [CrossRef]
- Munda, G.C.; Das, A.; Patel, D.P. Evaluation of transplanted and ratoon crop for double cropping of rice (Oryza sativa L.) under organic input management in mid altitude sub-tropical Meghalaya. Curr. Sci. 2009, 96, 1620–1627. [Google Scholar]
- Liang, Y.; Zhang, Q.; Zhou, J.; Li, Y.; Tan, C.; Huang, H. Effects of different cultivation patterns on rice quality and economic efficiency. Acta Agric. Boreali Sin. 2016, 31, 265–269, (In Chinese with English Abstract). [Google Scholar]
- Sen, L.T.H.; Bond, J. Agricultural adaptation to flood in lowland rice production areas of central Vietnam: Understanding the ‘regenerated rice’ ratoon system. Clim. Dev. 2017, 9, 274–285. [Google Scholar] [CrossRef]
- Santos, A.B.; Fageria, N.K.; Prabhu, A.S. Rice ratooning management practices for higher yields. Commun. Soil. Sci. Plant Anal. 2003, 34, 881–918. [Google Scholar] [CrossRef]
- Faruq, G.; Taha, R.M.; Prodhan, Z.H. Rice ratoon crop: A sustainable rice production system for tropical hill agriculture. Sustainability 2014, 6, 5785–5800. [Google Scholar] [CrossRef] [Green Version]
- Erdiman; Nieldalina; Misran, M.Y.; Ekamirnia. Salibu Technology Development in Lowland Rice in Three Agroecosystem Zones (AEZ) in West Sumatra; 2014 Assessment Report; BPTP: West Sumatra, Indonesia, 2014. (In Indonesia) [Google Scholar]
- Fitri, R.; Erdiman; Kusnadi, N.; Yamaoka, K. SALIBU technology in Indonesia: An alternative for efficient use of agricultural resources to achieve sustainable food security. Paddy Water Environ. 2019, 17, 403–410. [Google Scholar] [CrossRef]
- Yamaoka, K.; Khin, M.H.; Erdiman; Fitri, R. Increasing water productivity through applying tropical perennial rice cropping system (SALIBU technology) in CDZ, Myanmar. In Proceeding of the 23rd Congress on Irrigation and Drainage, Mexico City, Mexico, 8–14 October 2017; pp. 1–15. [Google Scholar]
- Pasaribu, P.O.; Triadiati; Anas, I. Rice ratooning using the Salibu system and the system of rice intensification method influenced by physiological traits. Pertanika J. Trop. Agric. Sci. 2018, 41, 637–654. [Google Scholar]
- Bahar, F.A.; De Datta, S.K. Prospects of increasing tropical rice production through ratooning. Agron. J. 1977, 69, 536–540. [Google Scholar] [CrossRef]
- Nakano, H.; Morita, S.; Kitagawa, H.; Takahashi, M. Effects of cutting height and trampling over stubbles of the first crop on dry matter yield in twice harvesting of forage rice. Plant Prod. Sci. 2009, 12, 124–127. [Google Scholar] [CrossRef]
- Petroudi, E.R.; Noormohammadi, G.; Mirhadi, M.J.; Madani, H.; Mobasser, H.R. Effects of nitrogen fertilization and rice harvest height on agronomic yield indices of ratoon rice-berseem clover intercropping system. Aust. J. Crop. Sci. 2011, 5, 566–574. [Google Scholar]
- Setiawan, A.; Tyasmoro, S.Y.; Nugroho, A. Intermittent irrigation and cutting height on ratoon rice (Oryza sativa L.). Agrivita J. Agric. Sci. 2014, 36, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Andrade, W.E.d.B.; Neto, S.A.; de Oliveira, A.B. Utilization of rice ratooning by farmers in Rio de Janeiro State, Brazil. In Rice Ratooning; International Rice Research Institute: Los Baños, Philippines, 1988; pp. 55–60. [Google Scholar]
- Jones, D.B. Rice ratoon response to main crop harvest cutting height. Agron. J. 1993, 85, 1139–1142. [Google Scholar] [CrossRef]
- Harrel, D.L.; Bond, J.A.; Blanche, S. Evaluation of maincrop stubble height on ratoon rice growth and development. Field Crops Res. 2009, 114, 396–403. [Google Scholar] [CrossRef]
- Huossainzade, A.; Azarpour, E.; Doustan, H.Z.; Moraditochaee, M.; Bozorgi, H.P. Management of cutting height and nitrogen fertilizer rates on grain yield and several attributes of ratoon rice (Oryza sativa L.) in Iran. World Appl. Sci. J. 2011, 15, 1089–1094. [Google Scholar]
- Beuzelin, J.M.; Meszaros, A.; Way, M.O.; Reagan, T.E. Rice harvest cutting height and ratoon crop effects on late season and over wintering stem borer (Lepidoptera: Crambidae) infestations. Crop Prot. 2012, 34, 47–55. [Google Scholar] [CrossRef]
- Daliri, M.S.; Eftekhari, A.; Mobasser, H.R.; Tari, D.B.; Porkalhor, H. Effect of cutting time and cutting height on yield and yield components of ratoon rice (Tarom Langrodi Variety). Asian J. Plant Sci. 2009, 8, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Nassiri, M.; Pirdashti, H.; Nejad, T.N. Effect of level and time of nitrogen fertilizer application and cutting height on yield and yield component of rice ratooning. In Proceedings of the Fourth International Iran and Russia Conference, Shahrekord, Iran; 2011; pp. 602–606. [Google Scholar]
- Shahri, M.M.; Yazdpour, H.; Soleymani, A.; Shahrajabian, M.H.; Sharifianzadeh, M. Yield and yield components of ratoon crop of rice as influenced by harvesting at different plant height and time. Res. Crop 2012, 13, 408–411. [Google Scholar]
- Coale, F.J.; Jones, D.B. Reflood timing for ratoon rice grown on Everglades Histosols. Agron. J. 1994, 86, 478–482. [Google Scholar] [CrossRef]
- Ichii, M. The effect of water management on ratoon ability of rice plants. Technol. Bull. Fac. Agric. Kagawa Univ. 1993, 34, 123–128. [Google Scholar]
- Bollich, C.N.; Turner, F.T. Commercial ratoon rice production in Texas, USA. In Rice Ratooning; IRRI: Manila, Philippines, 1988; pp. 257–264. [Google Scholar]
- Mahadevappa, M.; Yogeesha, H.S. Rice ratooning: Breeding, agronomic practices, and seed production potentials. In Rice Ratooning; International Rice Research Institute: Los Baños, Philippines, 1988; pp. 177–185. [Google Scholar]
- Department of Agricultural Planning (DAP), Ministry of Agriculture Livestock and Irrigation. Myanmar Agriculture in Brief; DAP: Naypyitaw, Myanmar, 2016.
- Phyo, A.S.; Grunbuhel, C.M.; Williams, L.; Htway, S.S. Does selective mechanization make up for labour shortages in rural Myanmar? IOP Conf. Ser. Earth Environ. Sci. 2019, 338. [Google Scholar] [CrossRef]
- Chen, Q.; He, A.; Wang, W.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in a direct seeding rice-ratoon rice system in central China. Field Crop Res. 2018, 223, 164–170. [Google Scholar] [CrossRef]
- He, A.; Wang, W.; Jiang, G.; Sun, H.; Jiang, M.; Man, J.; Cui, K.; Huang, J.; Peng, S.; Nie, L. Source-sink regulation and its effects on the regeneration ability of ratoon rice. Field Crop Res. 2019, 236, 155–164. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci. 2009, 49, 2246–2260. [Google Scholar] [CrossRef]
- Climate-Data.org: Bukittinggi Climate. Available online: https://en.climate-data.org/asia/indonesia/west-sumatra/bukittinggi-32982/ (accessed on 1 June 2020).
- Funaba, M.; Ishibashi, Y.; Hossain, M.A.; Iwanami, K.; Iwaya-Inoue, M. Influence of low/high temperature on water status in developing and maturing rice grain. Plant Prod. Sci. 2006, 9, 347–354. [Google Scholar] [CrossRef]
- Dat, T.V.; Peterson, M.L. Performance of near-isogenic genotypes of rice differing in growth duration. II. Carbohydrate partitioning during grain filling. Crop Sci. 1983, 23, 243–246. [Google Scholar]
- Wang, D.; Laza, M.R.C.; Cassman, K.G.; Huang, J.; Nie, L.; Ling, X.; Centeno, G.S.; Cui, K.; Wang, F.; Li, Y.; et al. Temperature explains the yield difference of double-season rice between tropical and subtropical environments. Field Crops Res. 2016, 198, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Sthapit, B.R.; Witcombe, J.R. Inheritance of tolerance to chilling stress in rice during Germination and plumule greening. Crop Sci. 1998, 38, 660–665. [Google Scholar] [CrossRef]
- Yoshida, R.; Kanno, A.; Sato, T.; Kameya, T. Cool-temperature-induced chlorosis in rice plants. I. Relationship between the induction and a disturbance of etioplast development. Plant Physiol. 1996, 110, 997–1005. [Google Scholar] [CrossRef] [Green Version]
Cropping | Season | Sowing Date | Transplanting Date | Cutting (Harvesting) Date | Cultivation Duration |
---|---|---|---|---|---|
First Trial in 2019 | |||||
Main Crop (MC1) | Summer 2019 | 15 February | 7 March | 1 June | 106 days |
Ratoon (R1–1) | Monsoon 2019 | – | – | 21 and 26 August | 81–82 days |
Second Trial in 2019–2020 | |||||
Main crop (MC2) | Postmonsoon 2019 | 6 September | 25 September | 12 December | 97 days |
Ratoon (R2–1) | Winter 2019–2020 | – | – | 1 March | 76–80 days |
Ratoon (R2–2) | Summer 2020 | – | – | 4 May | 60–64 days |
Ratoon Crop and Effects | Df | Number of Panicles | Number of Spikelets | Filled Grains Rate | 1000-Grain Weight | Grain Yield | Harvest Index |
---|---|---|---|---|---|---|---|
R1-1 | |||||||
Cutting (C) | 1 | 9.51 ** | 1.71 ns | 0.002 ns | 5.56 * | 0.166 ns | 0.456 ns |
Moisture (M) | 2 | 3.47 ns | 1.87 ns | 5.14 * | 1.27 ns | 9.43 ** | 0.632 ns |
C × M | 2 | 0.904 ns | 2.50 ns | 5.33 * | 1.90 ns | 3.31 ns | 2.57 ns |
R2-1 | |||||||
Cutting (C) | 1 | 0.547 ns | 1.74 ns | 1.81 ns | 0.334 ns | 2.80 ns | 2.79 ns |
Moisture (M) | 2 | 0.043 ns | 5.18 * | 4.98 * | 3.26 ns | 14.3 *** | 1.44 ns |
C × M | 2 | 2.42 ns | 0.26 ns | 1.08 ns | 2.17 ns | 0.079 ns | 0.113 ns |
R2-2 | |||||||
Cutting (C) | 1 | 1.71 ns | 0.527 ns | 0.545 ns | 9.93 ** | 7.75 * | 0.128 ns |
Moisture (M) | 2 | 1.11 ns | 2.35 ns | 4.10 * | 0.963 ns | 9.72 ** | 2.08 ns |
C × M | 2 | 0.110 ns | 0.307 ns | 0.772 ns | 1.11 ns | 0.159 ns | 0.262 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiraki, S.; Cho, T.M.; Htay, K.M.; Yamaoka, K. Effects of the Double-Cutting Method for Ratooning Rice in the SALIBU System under Different Soil Moisture Conditions on Grain Yield and Regeneration Rate. Agronomy 2020, 10, 1621. https://doi.org/10.3390/agronomy10111621
Shiraki S, Cho TM, Htay KM, Yamaoka K. Effects of the Double-Cutting Method for Ratooning Rice in the SALIBU System under Different Soil Moisture Conditions on Grain Yield and Regeneration Rate. Agronomy. 2020; 10(11):1621. https://doi.org/10.3390/agronomy10111621
Chicago/Turabian StyleShiraki, Shutaro, Thin Mar Cho, Khin Mar Htay, and Kazumi Yamaoka. 2020. "Effects of the Double-Cutting Method for Ratooning Rice in the SALIBU System under Different Soil Moisture Conditions on Grain Yield and Regeneration Rate" Agronomy 10, no. 11: 1621. https://doi.org/10.3390/agronomy10111621
APA StyleShiraki, S., Cho, T. M., Htay, K. M., & Yamaoka, K. (2020). Effects of the Double-Cutting Method for Ratooning Rice in the SALIBU System under Different Soil Moisture Conditions on Grain Yield and Regeneration Rate. Agronomy, 10(11), 1621. https://doi.org/10.3390/agronomy10111621