Mechanisms Underpinning Dynamic Impact Resistance Reinforcement by Multi-Scale Synergistic Effect Through Nano-Silica and Carbon Hollow Microsphere
Abstract
1. Introduction
2. Experimental Section
2.1. Preparation of CHM and NS-CHM/PDMS Composite
2.2. Characterization
3. Results and Discussion
3.1. Quasi-Static Response: Low Strain Rate
3.2. Dynamic Response: High Strain Rate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, C.; Wang, X.; Xue, S.; Wang, S. Investigation of risk-aware dynamic accident monitoring and early warning technologies for chemical production processes. Sci. Rep. 2025, 15, 9466. [Google Scholar] [CrossRef] [PubMed]
- Shao, R.; Pan, H.; Huang, J. Safety risk assessment of chemical production process based on local and global objectives. J. Loss Prev. Process Ind. 2022, 79, 104827. [Google Scholar]
- Jiang, W.; Ma, S.; Zhang, Z.; Xu, Y. Study on key causal factors and pathways of fire and explosion accidents in hazardous chemical storage tank area. J. Loss Prev. Process Ind. 2025, 97, 105704. [Google Scholar] [CrossRef]
- Swuste, P.; van Nunen, K.; Reniers, G.; Khakzad, N. Domino effects in chemical factories and clusters: An historical perspective and discussion. Process Saf. Environ. Prot. 2019, 124, 18–30. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, K.; Liu, Q.; Wang, C.; Huang, Y.; Wan, W.; Feng, W.; Yao, P. Synergistic reinforcement of copper matrix composites with MoSi2 and graphene: Microstructure, mechanical properties, and tribological performance. Compos. Struct. 2025, 369, 119353. [Google Scholar] [CrossRef]
- Mertdinç-Ülküseven, S.; Süzer, I.; Ürper, A.K.; Çelik, A.I.; Baci, D.T.; Gürarslan, K.A.; Öveçoğlu, M.L.; Ağaoğulları, D. Effect of reinforcement amount on the microstructural and mechanical properties of mechanically alloyed graphene nanoplatelet reinforced Al-3.5 wt% Cu composites. Diam. Relat. Mater. 2025, 157, 112493. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, G. Strength-plasticity synergy of deformed Ti2AlC particles in aluminum matrix composites via interlayer slip. Mater. Sci. Eng. A 2025, 939, 148488. [Google Scholar] [CrossRef]
- Kuttan, A.A.; Rajesh, R.; Anand, D.M. Enhancing Mechanical Properties of Al6061 Alloy with Zirconium and Titanium Carbide Reinforcements. J. Mater. Eng. Perform. 2025; prepublish. [Google Scholar] [CrossRef]
- Sasi Kumar, M.; Hemalatha, S.; Ponnavan, S.; Varunkumar, V. Characterization of chemically treated luffa aegyptiaca fiber-reinforced epoxy composites with varying bio-filler. J. Adhes. Sci. Technol. 2025, 39, 1894–1912. [Google Scholar] [CrossRef]
- Kattimani, M.A.; Nadeem, M.M.; Ahamed, M.B.N.; Hemanth, B.R.; Shariff, M.M.; Rajan, V.; Karthik, S.B.; Rajesh, A.; Prasad, C.D. Optimized Graphene Oxide Content for Enhancement in the Mechanical Properties of Epoxy Composites. J. Inst. Eng. Ser. D, 2025; prepublish. [Google Scholar] [CrossRef]
- Tushe, N.A.; Mahmud, S.T.; Islam, N.; Mostofa, G.; Tuli, N.T.; Bin Rashid, A. Design and development of motorcycle helmet using carbon fiber reinforced epoxy resin hybrid composite. Results Mater. 2025, 26, 100716. [Google Scholar] [CrossRef]
- Barber, S.; Hoque, E.; Ko, K.; Pham, J.T.; Yavitt, B.M. Gelation Dynamics in Polydimethylsiloxane Bottlebrush Elastomers. Macromol. Rapid Commun. 2025, 46, e2401072. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; Cao, J.; Fu, Y.; Hang, G.; Duan, J.; Wang, X. Research progress of flexible triboelectric nanogenerators based on polydimethylsiloxane. Renew. Sustain. Energy Rev. 2025, 220, 115883. [Google Scholar] [CrossRef]
- Xia, Y.; Wu, J.; Yang, X.; Qu, L.; Xie, H. Mechanical Behavior and Crack Resistance of Modified Polydimethylsiloxane Impermeable Coating for Concrete Lining Subjected to Ultra-High Internal Pressure. Appl. Sci. 2025, 15, 6132. [Google Scholar] [CrossRef]
- Mandal, K.S.; Kumar, R.; Pradhan, A.R.; Kumar, D.; Kumar, S. Impact of nano fillers on the mechanical and rheological behavior of polydimethylsiloxane-based nanocomposite elastomer. Ceram. Int. 2025, 51, 18852–18864. [Google Scholar] [CrossRef]
- Laftah, W.A.; Rahman, W.A.W.A.; Ibrahim, A.N. Effects of carbon nanotube and curing agent concentrations on the mechanical, thermal and electrical properties of polydimethylsiloxane: Optimization and statistical analysis. RSC Adv. 2025, 15, 14838–14847. [Google Scholar] [CrossRef] [PubMed]
- Cockreham, C.; Rosener, J.; Hawks, S.A.; Glascoe, E. Cure Kinetics and Thermal Behavior of a Printable Polydimethylsiloxane-Based Polymer. ACS Omega 2025, 10, 10294–10301. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Zhang, Y.X.; Yang, C.; Meng, F.Y.; Meng, F.D.; Wang, T.; Luo, Z. Investigation of the Reinforcement Mechanism and Impact Resistance of Carbon Hollow Microsphere-Reinforced PDMS Composites. Polymers 2025, 17, 2087. [Google Scholar] [CrossRef]
- Li, Z.; Shen, J.; Ma, H.; Fuyong, L.; Yu, W.; Shangguan, Y.; Zheng, Q. Effect of partially crosslinked nanoparticle cluster networks in dispersed rubber phase on the toughness and stiffness of polypropylene composites. Compos. Part B 2025, 304, 112669. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, X.; Bai, Y.; Li, B.; Wang, X.; Gao, Y.; Dai, C.; Li, Z.; Wang, P. Mesoporous silica nanoparticles doped in liquid crystal elastomers for synergetically enhancing vibration damping and energy absorption properties. Colloids Surf. A Physicochem. Eng. Asp. 2025, 723, 137334. [Google Scholar] [CrossRef]
- Lasmi, S.; Bouchoul, B.; Marcos-Fernández, Á.A.; Lamiri, L.; Hamidouche, M.; Zoukrami, F.; Guerba, H. Investigation on 3D-Printed Mesoporous Silica/Photocurable Resin-Based Nanocomposites: Mechanical, Morphological, and Thermal Properties. J. Mater. Eng. Perform. 2025; prepublish. [Google Scholar] [CrossRef]
- Rose, S.; Marcellan, A.; Narita, T.; Boué, F.; Cousinb, F.; Hourdet, D. Structure investigation of nanohybrid PDMA/silica hydrogels at rest and under uniaxial deformation. Soft Matter 2015, 11, 5905–5917. [Google Scholar] [CrossRef]
- Ogaili, A.A.F.; Al-Ameen, E.S.; Kadhim, M.S.; Mustafa, M.N. Evaluation of mechanical and electrical properties of GFRP composite strengthened with hybrid nanomaterial fillers. AIMS Mater. Sci. 2020, 7, 93–102. [Google Scholar] [CrossRef]
- Jayabalakrishnan, D.; Saravanan, K.; Ravi, S.; Prabhu, P.; Maridurai, T.; Prakash, V.R.A. Fabrication and characterization of acrylonitrile butadiene rubber and stitched e-glass fibre tailored nano-silica epoxy resin composite. Silicon 2020, 13, 2509–2517. [Google Scholar] [CrossRef]
- Saminathan, R.; Hadidi, H.; Fageehi, Y.A.; Kumar, P.M.; Venkatasudhahar, M.; Ankit; Ram, S.; Gebreyohannes, D.T. Experimental analysis of mechanical and thermal characteristics of luffa/epoxy polymer composite under the influence of nanosilica. Adv. Mater. Sci. Eng. 2022, 2022, 6040629. [Google Scholar] [CrossRef]
- Nagendran, M.; Senthil Maharaj, K.; Sekar, M.; Vignesh Moorthy, P. Enhanced Mechanical and Thermal Properties in Epoxy-Based Glass Fabric Composites via Nano Silica Integration. Polym.-Plast. Technol. Mater. 2025, 64, 208–221. [Google Scholar]
- Lyu, K.; Chen, X.; Liu, X.; Xie, X.; Shi, J.; Xia, Q.; Shah, S.P. A comparative study of utilizing silica powder and nano-based silica to enhance the properties of MSWIFA-cement based composites. Constr. Build. Mater. 2025, 486, 141987. [Google Scholar] [CrossRef]
- Singh, K.S.; Yadav, A.; Singh, S.; Jain, A.; Kumar, A. Enhancement of mechanical and viscoelastic properties of epoxy and epoxy-nano silica composites using self-healing microcapsules. Mater. Today Commun. 2025, 43, 111741. [Google Scholar] [CrossRef]
- Gersappe, D. Molecular mechanisms of failure in polymer nanocomposites. Phys. Rev. Lett. 2002, 89, 058301. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Zhang, Z.; Huang, Q.; Niu, B.; Zhang, Y.; Long, D. Detailed insights of polydimethylsiloxane (PDMS) degradation mechanism via ReaxFF MD and experiments. Chem. Eng. J. 2024, 488, 150728. [Google Scholar] [CrossRef]
- Krishnan, G.S.; Naveen, S.; Shahnawaz, M.; Ramcharan, T. Pyrolysis and thermal degradation studies of silane-carbosilane transformation using hyphenated thermal analysis. J. Anal. Appl. Pyrolysis 2022, 164, 105535. [Google Scholar] [CrossRef]
Product Model | Bulk Density (g/cm3) | Average Compressive Strength (psi) | Moisture Content | |
---|---|---|---|---|
Phenoset microspheres | BJO-0930 | 0.104 | 3 | <4 wt.% |
NS (wt.%) | CHM (wt.%) | Sample Denotations |
---|---|---|
0 | 4 | CHM04/PDMS |
0.5 | 3.5 | NS0.5-CHM3.5/PDMS |
1 | 3 | NS01-CHM03/PDMS |
2 | 2 | NS02-CHM02/PDMS |
3 | 1 | NS03-CHM01/PDMS |
4 | 0 | NS04/PDMS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Yang, C.; Zhang, Y.; Wang, L.; Wang, H.; Meng, F.; Meng, F.; Wang, T.; Luo, Z. Mechanisms Underpinning Dynamic Impact Resistance Reinforcement by Multi-Scale Synergistic Effect Through Nano-Silica and Carbon Hollow Microsphere. Polymers 2025, 17, 2592. https://doi.org/10.3390/polym17192592
Yu Y, Yang C, Zhang Y, Wang L, Wang H, Meng F, Meng F, Wang T, Luo Z. Mechanisms Underpinning Dynamic Impact Resistance Reinforcement by Multi-Scale Synergistic Effect Through Nano-Silica and Carbon Hollow Microsphere. Polymers. 2025; 17(19):2592. https://doi.org/10.3390/polym17192592
Chicago/Turabian StyleYu, Yingying, Cheng Yang, Yaxi Zhang, Linjia Wang, Hong Wang, Fandong Meng, Fanyi Meng, Tao Wang, and Zhenmin Luo. 2025. "Mechanisms Underpinning Dynamic Impact Resistance Reinforcement by Multi-Scale Synergistic Effect Through Nano-Silica and Carbon Hollow Microsphere" Polymers 17, no. 19: 2592. https://doi.org/10.3390/polym17192592
APA StyleYu, Y., Yang, C., Zhang, Y., Wang, L., Wang, H., Meng, F., Meng, F., Wang, T., & Luo, Z. (2025). Mechanisms Underpinning Dynamic Impact Resistance Reinforcement by Multi-Scale Synergistic Effect Through Nano-Silica and Carbon Hollow Microsphere. Polymers, 17(19), 2592. https://doi.org/10.3390/polym17192592