Preparation and Performance Analysis of Tung Cake Protein Adhesive
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation Process of Tung Cake Protein Adhesive
2.2.2. Viscosity Test
2.2.3. Preparation of 3-Layer Plywood and Evaluation of Gluing Properties
2.2.4. X-Ray Diffraction (XRD) Analysis
2.2.5. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.2.6. Thermogravimetric Analysis (TG/TGA)
2.2.7. Differential Scanning Calorimetry (DSC) Analysis
2.2.8. Scanning Electron Microscopy (SEM) Analysis
3. Results
3.1. Alkali-Modified Viscosity Analysis
3.2. Analysis of Bonding Strength Enhancement by Cross-Linking Modification
3.3. XRD Analysis
3.4. FTIR Analysis
3.5. TG/TGA and DSC Analysis
3.6. SEM Analysis
3.7. Strategic Analysis of Cost Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eisen, A.; Bussa, M.; Röder, H. A Review of Environmental Assessments of Biobased against Petrochemical Adhesives. J. Clean. Prod. 2020, 277, 124277. [Google Scholar] [CrossRef]
- Arias, A.; González-Rodríguez, S.; Vetroni Barros, M.; Salvador, R.; De Francisco, A.C.; Moro Piekarski, C.; Moreira, M.T. Recent Developments in Bio-Based Adhesives from Renewable Natural Resources. J. Clean. Prod. 2021, 314, 127892. [Google Scholar] [CrossRef]
- Hymowitz, T.; Collins, F.I.; Panczner, J.; Walker, W.M. Relationship Between the Content of Oil, Protein, and Sugar in Soybean Seed. Agron. J. 1972, 64, 613–616. [Google Scholar] [CrossRef]
- Shockey, J.M.; Gidda, S.K.; Chapital, D.C.; Kuan, J.-C.; Dhanoa, P.K.; Bland, J.M.; Rothstein, S.J.; Mullen, R.T.; Dyer, J.M. Tung Tree DGAT1 and DGAT2 Have Nonredundant Functions in Triacylglycerol Biosynthesis and Are Localized to Different Subdomains of the Endoplasmic Reticulum. Plant Cell 2006, 18, 2294–2313. [Google Scholar] [CrossRef] [PubMed]
- Morrisey, P.A.; Olbrantz, K.; Greaser, M.L. A Simple, Sensitive Enzymatic Method for Quantitation of Soya Proteins in Soya-Meat Blends. Meat Sci. 1982, 7, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Meng, J.; Moore, A.M.; Chang, J.; Gou, J.; Park, S. Thermogravimetric Investigation on the Degradation Properties and Combustion Performance of Bio-Oils. Bioresour. Technol. 2014, 152, 267–274. [Google Scholar] [CrossRef]
- Gao, Q.; Shi, S.Q.; Zhang, S.; Li, J.; Wang, X.; Ding, W.; Liang, K.; Wang, J. Soybean Meal-based Adhesive Enhanced by MUF Resin. J. Appl. Polym. Sci. 2012, 125, 3676–3681. [Google Scholar] [CrossRef]
- Nordqvist, P.; Khabbaz, F.; Malmström, E. Comparing Bond Strength and Water Resistance of Alkali-Modified Soy Protein Isolate and Wheat Gluten Adhesives. Int. J. Adhes. Adhes. 2010, 30, 72–79. [Google Scholar] [CrossRef]
- Kim, K.-H.; Jahan, S.A.; Lee, J.-T. Exposure to Formaldehyde and Its Potential Human Health Hazards. J. Environ. Sci. Health Part C 2011, 29, 277–299. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Liu, S.; Yue, J. Study on Immobilized Lipase Catalyzed Transesterification Reaction of Tung Oil. Agric. Sci. China 2006, 5, 859–864. [Google Scholar] [CrossRef]
- Solt, P.; Konnerth, J.; Gindl-Altmutter, W.; Kantner, W.; Moser, J.; Mitter, R.; Van Herwijnen, H.W.G. Technological Performance of Formaldehyde-Free Adhesive Alternatives for Particleboard Industry. Int. J. Adhes. Adhes. 2019, 94, 99–131. [Google Scholar] [CrossRef]
- Moure, A.; Sineiro, J.; Domínguez, H.; Parajó, J.C. Functionality of Oilseed Protein Products: A Review. Food Res. Int. 2006, 39, 945–963. [Google Scholar] [CrossRef]
- Zhong, Z.; Sun, X.S.; Wang, D. Isoelectric pH of Polyamide–Epichlorohydrin Modified Soy Protein Improved Water Resistance and Adhesion Properties. J. Appl. Polym. Sci. 2007, 103, 2261–2270. [Google Scholar] [CrossRef]
- Hamarneh, A.I.; Heeres, H.J.; Broekhuis, A.A.; Sjollema, K.A.; Zhang, Y.; Picchioni, F. Use of Soy Proteins in Polyketone-Based Wood Adhesives. Int. J. Adhes. Adhes. 2010, 30, 626–635. [Google Scholar] [CrossRef]
- Cheng, H.N.; Dowd, M.K.; He, Z. Investigation of Modified Cottonseed Protein Adhesives for Wood Composites. Ind. Crops Prod. 2013, 46, 399–403. [Google Scholar] [CrossRef]
- He, Z.; Chapital, D.C.; Cheng, H.N.; Thomas Klasson, K.; Olanya, O.M.; Uknalis, J. Application of Tung Oil to Improve Adhesion Strength and Water Resistance of Cottonseed Meal and Protein Adhesives on Maple Veneer. Ind. Crops Prod. 2014, 61, 398–402. [Google Scholar] [CrossRef]
- Cheng, H.N. Soy and Cottonseed Protein Blends as Wood Adhesives☆. Ind. Crops Prod. 2016, 85, 324–330. [Google Scholar] [CrossRef]
- Cheng, H.N.; Ford, C.; Dowd, M.K.; He, Z. Effects of Phosphorus-Containing Additives on Soy and Cottonseed Protein as Wood Adhesives. Int. J. Adhes. Adhes. 2017, 77, 51–57. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Wu, Y.; He, Z.; Wan, H. “Greener” Adhesives Composed of Urea-Formaldehyde Resin and Cottonseed Meal for Wood-Based Composites. J. Clean. Prod. 2018, 187, 361–371. [Google Scholar] [CrossRef]
- Dyer, J.M.; Chapital, D.C.; Kuan, J.-C.W.; Mullen, R.T.; Turner, C.; McKeon, T.A.; Pepperman, A.B. Molecular Analysis of a Bifunctional Fatty Acid Conjugase/Desaturase from Tung. Implications for the Evolution of Plant Fatty Acid Diversity. Plant Physiol. 2002, 130, 2027–2038. [Google Scholar] [CrossRef]
- Wang, J.; Lu, Y.; Chu, Q.; Ma, C.; Cai, L.; Shen, Z.; Chen, H. Facile Construction of Superhydrophobic Surfaces by Coating Fluoroalkylsilane/Silica Composite on a Modified Hierarchical Structure of Wood. Polymers 2020, 12, 813. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, S.; Zhang, M.; Ma, M.; Wang, C.; Li, J. Improvement of Mechanical Robustness of the Superhydrophobic Wood Surface by Coating PVA/SiO2 Composite Polymer. Appl. Surf. Sci. 2013, 280, 686–692. [Google Scholar] [CrossRef]
- Park, J.-Y.; Kim, D.-K.; Wang, Z.-M.; Lu, P.; Park, S.-C.; Lee, J.-S. Production and Characterization of Biodiesel from Tung Oil. Appl. Biochem. Biotechnol. 2008, 148, 109–117. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Chapital, D.C.; Cheng, H.N.; Dowd, M.K. Comparison of Adhesive Properties of Water- and Phosphate Buffer-Washed Cottonseed Meals with Cottonseed Protein Isolate on Maple and Poplar Veneers. Int. J. Adhes. Adhes. 2014, 50, 102–106. [Google Scholar] [CrossRef]
- Desai, S.D.; Patel, J.V.; Sinha, V.K. Polyurethane Adhesive System from Biomaterial-Based Polyol for Bonding Wood. Int. J. Adhes. Adhes. 2003, 23, 393–399. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Xie, W.; Tang, Y.; Yang, F.; Gong, C.; Wang, C.; Li, X.; Li, C. Preparation and Characterization of Soybean Protein Adhesives Modified with an Environmental-Friendly Tannin-Based Resin. Polymers 2023, 15, 2289. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Z.; Mahmood, N.; Huang, S.; Xu, C. (Charles) Sustainable Bio-Phenol-Hydroxymethylfurfural Resins Using Phenolated de-Polymerized Hydrolysis Lignin and Their Application in Bio-Composites. Ind. Crops Prod. 2016, 79, 84–90. [Google Scholar] [CrossRef]
- Hettiarachchy, N.S.; Kalapathy, U.; Myers, D.J. Alkali-modified Soy Protein with Improved Adhesive and Hydrophobic Properties. J. Am. Oil Chem. Soc. 1995, 72, 1461–1464. [Google Scholar] [CrossRef]
- Harwood, J.L. Chapter 6—Modification of Oil Crops to Produce Fatty Acids for Industrial Applications. In Fatty Acids; AOCS Press: Champaign, IL, USA, 2017; pp. 187–236. [Google Scholar]
- Shockey, J. Chapter 10—Tung (Vernicia Fordii and Vernicia Montana). In Industrial Oil Crops; AOCS Press: Champaign, IL, USA, 2016; pp. 243–273. [Google Scholar]
- Kalapathy, U.; Hettiarachchy, N.S.; Myers, D.; Rhee, K.C. Alkali-modified Soy Proteins: Effect of Salts and Disulfide Bond Cleavage on Adhesion and Viscosity. J. Am. Oil Chem. Soc. 1996, 73, 1063–1066. [Google Scholar] [CrossRef]
- Sun, X.; Bian, K. Shear Strength and Water Resistance of Modified Soy Protein Adhesives. J. Am. Oil Chem. Soc. 1999, 76, 977–980. [Google Scholar] [CrossRef]
- Liu, D.; Chen, H.; Chang, P.R.; Wu, Q.; Li, K.; Guan, L. Biomimetic Soy Protein Nanocomposites with Calcium Carbonate Crystalline Arrays for Use as Wood Adhesive. Bioresour. Technol. 2010, 101, 6235–6241. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Luo, J.; Gao, Q.; Li, J. Effects of Heat Treatment on Wet Shear Strength of Plywood Bonded with Soybean Meal-Based Adhesive. Ind. Crops Prod. 2015, 63, 281–286. [Google Scholar] [CrossRef]
- Park, B.; Jeong, H. Effects of Acid Hydrolysis on Microstructure of Cured Urea-formaldehyde Resins Using Atomic Force Microscopy. J. Appl. Polym. Sci. 2011, 122, 3255–3262. [Google Scholar] [CrossRef]
- Cornille, A.; Auvergne, R.; Figovsky, O.; Boutevin, B.; Caillol, S. A Perspective Approach to Sustainable Routes for Non-Isocyanate Polyurethanes. Eur. Polym. J. 2017, 87, 535–552. [Google Scholar] [CrossRef]
- GB/T 14074-2017; The National Technical Committee for Standardization of Wood-based Panels. Test Methods for Wood Adhesives and Resins Used in the Wood Industry: Beijing, China, 2018.
- Mishra, D.; Kumar Sinha, V. Eco-Economical Polyurethane Wood Adhesives from Cellulosic Waste: Synthesis, Characterization and Adhesion Study. Int. J. Adhes. Adhes. 2010, 30, 47–54. [Google Scholar] [CrossRef]
- GB/T 17657-2022; The National Technical Committee for Standardization of Wood-based Panels. Test Methods for Physical and Chemical Properties of Artificial Boards and Decorative Laminates: Beijing, China, 2023.
- Chen, S.; Chen, H.; Yang, S.; Fan, D. Developing an Antifungal and High-Strength Soy Protein-Based Adhesive Modified by Lignin-Based Polymer. Ind. Crops Prod. 2021, 170, 113795. [Google Scholar] [CrossRef]
- Ghahri, S.; Mohebby, B.; Pizzi, A.; Mirshokraie, A.; Mansouri, H.R. Improving Water Resistance of Soy-Based Adhesive by Vegetable Tannin. J. Polym. Env. 2018, 26, 1881–1890. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, L. Interaction and Properties of Highly Exfoliated Soy Protein/Montmorillonite Nanocomposites. Biomacromolecules 2006, 7, 1700–1706. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, W.; Xu, P.; Cai, X.; Dong, W.; Chen, M.; Du, M.; Liu, T.; Jan Lemstra, P.; Ma, P. The Bonding Strength, Water Resistance and Flame Retardancy of Soy Protein-Based Adhesive by Incorporating Tailor-Made Core–Shell Nanohybrid Compounds. Chem. Eng. J. 2022, 428, 132390. [Google Scholar] [CrossRef]
- Luo, J.; Li, C.; Li, X.; Luo, J.; Gao, Q.; Li, J. A New Soybean Meal-Based Bioadhesive Enhanced with 5,5-Dimethyl Hydantoin Polyepoxide for the Improved Water Resistance of Plywood. RSC Adv. 2015, 5, 62957–62965. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, M.; Luo, J.; Li, X.; Gao, Q.; Li, J. A Novel Water-Based Process Produces Eco-Friendly Bio-Adhesive Made from Green Cross-Linked Soybean Soluble Polysaccharide and Soy Protein. Carbohydr. Polym. 2017, 169, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Park, B.-D.; Jeong, H.-W. Hydrolytic Stability and Crystallinity of Cured Urea–Formaldehyde Resin Adhesives with Different Formaldehyde/Urea Mole Ratios. Int. J. Adhes. Adhes. 2011, 31, 524–529. [Google Scholar] [CrossRef]
- Kang, H.; Wang, Z.; Wang, Y.; Zhao, S.; Zhang, S.; Li, J. Development of Mainly Plant Protein-Derived Plywood Bioadhesives via Soy Protein Isolate Fiber Self-Reinforced Soybean Meal Composites. Ind. Crops Prod. 2019, 133, 10–17. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Li, J.; Li, K.; Li, J. Perm-Inspired High-Performance Soy Protein Isolate and Chicken Feather Keratin-Based Wood Adhesive without External Crosslinker. Macro Mater. Amp. Eng. 2021, 306, 2100498. [Google Scholar] [CrossRef]
- Xu, C.; Xu, Y.; Chen, M.; Zhang, Y.; Li, J.; Gao, Q.; Shi, S.Q. Soy Protein Adhesive with Bio-Based Epoxidized Daidzein for High Strength and Mildew Resistance. Chem. Eng. J. 2020, 390, 124622. [Google Scholar] [CrossRef]
- Brochier Salon, M.-C.; Belgacem, M.N. Competition between Hydrolysis and Condensation Reactions of Trialkoxysilanes, as a Function of the Amount of Water and the Nature of the Organic Group. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366, 147–154. [Google Scholar] [CrossRef]
- Brochier Salon, M.-C.; Belgacem, M.N. Hydrolysis-Condensation Kinetics of Different Silane Coupling Agents. Phosphorus Sulfur. Silicon Relat. Elem. 2011, 186, 240–254. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, S.; Zhang, W.; Qi, C.; Zhang, S.; Li, J. Bio-Inspired Cellulose Nanofiber-Reinforced Soy Protein Resin Adhesives with Dopamine-Induced Codeposition of “Water-Resistant” Interphases. Appl. Surf. Sci. 2019, 478, 441–450. [Google Scholar] [CrossRef]
- Chen, C.; Ma, P.; Jiang, S.; Bourouis, I.; Pang, Z.; Liu, X.; Wang, P. Effect of Flaxseed Gum on the Textural, Rheological, and Tribological Properties of Acid-Induced Soy Protein Isolate Gels. Polymers 2023, 15, 2834. [Google Scholar] [CrossRef]
- Kallakas, H.; Plaza, N.; Crooks, C.; Turner, D.; Gargulak, M.; Arvanitis, M.A.; Frihart, C.R.; Hunt, C.G. Effect of Protein Surface Hydrophobicity and Surface Amines on Soy Adhesive Strength. Polymers 2024, 16, 202. [Google Scholar] [CrossRef]
- Chen, C.; Chen, F.; Liu, B.; Du, Y.; Liu, C.; Xin, Y.; Liu, K. Peanut Meal-Based Wood Adhesives Enhanced by Urea and Epichlorohydrin. R. Soc. Open Sci. 2019, 6, 191154. [Google Scholar] [CrossRef] [PubMed]
- Mušič, B.; Pečnik, J.G.; Pondelak, A. Stabilization of Fish Protein-Based Adhesive by Reduction of Its Hygroscopicity. Polymers 2024, 16, 2195. [Google Scholar] [CrossRef] [PubMed]
- Salarbashi, D.; Tajik, S.; Shojaee-Aliabadi, S.; Ghasemlou, M.; Moayyed, H.; Khaksar, R.; Noghabi, M.S. Development of New Active Packaging Film Made from a Soluble Soybean Polysaccharide Incorporated Zataria Multiflora Boiss and Mentha Pulegium Essential Oils. Food Chem. 2014, 146, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, C.; Du, Z.; Wang, H.; Du, G.; Essawy, H.; Lei, H.; Xi, X.; Zhou, X.; Cao, M. Soybean Meal–Oxidized Lignin as Bio-Hybridized Wood Panel Adhesives with Increased Water Resistance. Forests 2024, 15, 1036. [Google Scholar] [CrossRef]
- Bilba, K.; Arsene, M.-A. Silane Treatment of Bagasse Fiber for Reinforcement of Cementitious Composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1488–1495. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, X.; Gui, Z.; Hu, Y.; Fan, W. Thermal and Crystallization Behavior of Silane-crosslinked Polypropylene. Polym. Int. 2005, 54, 442–447. [Google Scholar] [CrossRef]
- Núñez-Decap, M.; Friz-Sánchez, C.; Opazo-Carlsson, C.; Moya-Rojas, B.; Vidal-Vega, M. A Potential Replacement to Phenol–Formaldehyde-Based Adhesives: A Study of Plywood Panels Manufactured with Bio-Based Wood Protein and Nanolignin Adhesives. Forests 2024, 15, 1345. [Google Scholar] [CrossRef]
- Gonçalves, S.; Paiva, N.T.; Martins, J.; Carvalho, L.H.; Magalhães, F.D. Fast-Curing 3-Layer Particleboards with Lignosulfonate and pMDI Adhesives. Forests 2024, 15, 948. [Google Scholar] [CrossRef]
- Saleh, T.A. Mercury Sorption by Silica/Carbon Nanotubes and Silica/Activated Carbon: A Comparison Study. J. Water Supply Res. Tec. 2015, 64, 892–903. [Google Scholar] [CrossRef]
- Averina, E.; Konnerth, J.; Van Herwijnen, H.W.G. Protein Adhesives: Investigation of Factors Affecting Wet Strength of Alkaline Treated Proteins Crosslinked with Glyoxal. Polymers 2022, 14, 4351. [Google Scholar] [CrossRef]
- Eslah, F.; Jonoobi, M.; Faezipour, M.; Afsharpour, M.; Enayati, A.A. Preparation and Development of a Chemically Modified Bio-Adhesive Derived from Soybean Flour Protein. Int. J. Adhes. Adhes. 2016, 71, 48–54. [Google Scholar] [CrossRef]
- Liu, H. Soy-Oil-Based Waterborne Polyurethane Improved Wet Strength of Soy Protein Adhesives on Wood. Int. J. Adhes. Adhes. 2017, 73, 66–74. [Google Scholar] [CrossRef]
Adhesives | Tung Cake Protein Adhesive | Market for Wood-Based Protein Adhesives | ||||
---|---|---|---|---|---|---|
Primary materials | Tung cake | Water | NaOH | KMnO4 | MTMS | - |
Price per unit (CNY per ton) | 1500 | 2.80 | 2000 | 3000 | 4500 | - |
Overall sum (CNY per ton) | 2732.80 | 5500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zheng, K.; Zhao, W.; Zheng, S.; Wan, H.; Gao, J. Preparation and Performance Analysis of Tung Cake Protein Adhesive. Polymers 2024, 16, 3437. https://doi.org/10.3390/polym16233437
Wang W, Zheng K, Zhao W, Zheng S, Wan H, Gao J. Preparation and Performance Analysis of Tung Cake Protein Adhesive. Polymers. 2024; 16(23):3437. https://doi.org/10.3390/polym16233437
Chicago/Turabian StyleWang, Wei, Ke Zheng, Wenzheng Zhao, Shenglong Zheng, Hui Wan, and Jingran Gao. 2024. "Preparation and Performance Analysis of Tung Cake Protein Adhesive" Polymers 16, no. 23: 3437. https://doi.org/10.3390/polym16233437
APA StyleWang, W., Zheng, K., Zhao, W., Zheng, S., Wan, H., & Gao, J. (2024). Preparation and Performance Analysis of Tung Cake Protein Adhesive. Polymers, 16(23), 3437. https://doi.org/10.3390/polym16233437