Construction and Characterization of Polyolefin Elastomer Blends with Chemically Modified Hydrocarbon Resin as a Photovoltaic Module Encapsulant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of m-HCR
2.3. Sample Preparation
2.4. Determination of Gel Content
2.5. Lamination Process for Preparing the PV Module
2.6. Equipment and Experiments
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hsu, H.Y.; Hsieh, H.H.; Tuan, H.Y.; Hwang, J.L. Oxidized low density polyethylene: A potential cost-effective, stable, and recyclable polymeric encapsulant for photovoltaic modules. Sol. Energy Mater. Sol. Cells 2010, 94, 955–959. [Google Scholar] [CrossRef]
- Zweibel, K. Thin film PV manufacturing: Materials costs and their optimization. Sol. Energy Mater. Sol. Cells 2000, 63, 375–386. [Google Scholar] [CrossRef]
- Pan, K.; Zeng, X.; Li, H.; Lai, X.; Huang, J. Synthesis of an adhesion enhancing polyhydrosiloxane containing acrylate groups and its cross-linked addition-cure silicone encapsulant. J. Elastom. Plast. 2013, 47, 416–430. [Google Scholar] [CrossRef]
- Pan, K.; Zeng, X.; Li, H.; Lai, X. Synthesis of siloxanes containing vinyl and epoxy group and its enhancement for adhesion of addition-cure silicone encapsulant. J. Macromol. Sci. A 2013, 50, 1126–1132. [Google Scholar] [CrossRef]
- Hirschl, C.; Biebl-Rydlo, M.; DeBiasio, M.; Mühleisen, W.; Neumaier, L.; Scherf, W.; Oreski, G.; Eder, G.; Chernev, B.; Schwab, W.; et al. Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants-a comparative study. Sol. Energy Mater. Sol. Cells 2013, 116, 203–218. [Google Scholar] [CrossRef][Green Version]
- Adothu, B.; Bhatt, P.; Chattopadhyay, S.; Zele, S.; Oderkerk, J.; Sagar, H.P.; Costa, F.R.; Mallick, S. Newly developed thermoplastic polyolefin rncapsulant-a potential candidate for crystalline silicon photovoltaic modules encapsulation. Sol. Energy 2019, 194, 581–588. [Google Scholar] [CrossRef]
- De Oliveira, M.C.C.; Cardoso, A.S.A.D.; Viana, M.M.; de Freitas CunhaLins, V. The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renew. Sustain. Energy Rev. 2018, 81, 2299–2317. [Google Scholar] [CrossRef]
- Tábi, T. The application of the synergistic effect between the crystal structure of poly(lactic acid) (PLA) and the presence of ethylene vinyl acetate copolymer (EVA) to produce highly ductile PLA/EVA blends. J. Therm. Anal. Calorim. 2019, 138, 1287–1297. [Google Scholar] [CrossRef][Green Version]
- Yang, G.; Wu, W.; Dong, H.; Wang, Y.; Qu, H.; Xu, J. Synergistic flame retardant effects of aluminum phosphate and trimer in ethylene–vinyl acetate composites. J. Therm. Anal. Calorim. 2018, 132, 919–926. [Google Scholar] [CrossRef]
- Czanderna, A.W.; Pern, F.J. Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Sol. Energy Mater. Sol. Cells 1996, 43, 101–181. [Google Scholar] [CrossRef]
- Hasan, S.; Arif, A.F.M. Performance and life prediction model for photovoltaic modules: Effect of encapsulant constitutive behavior. Sol. Energy Mater. Sol. Cells 2014, 122, 75–87. [Google Scholar] [CrossRef]
- Oreski, G.; Omazic, A.; Eder, G.C.; Voronko, Y.; Neumaier, L.; Mühleisen, W.; Hirschl, C.; Ujvari, G.; Ebner, R.; Edler, M. Properties and degradation behaviour of polyolefin encapsulants for photovoltaic modules. Prog. Photovolt. Res. Appl. 2020, 28, 1277–1288. [Google Scholar] [CrossRef]
- Klemchuk, P.; Ezrin, E.; Lavigne, G.; Holley, W.; Galica, J.; Agro, S. Investigation of the degradation and stabilization of EVA-based encapsulant in field-aged solar energy modules. Polym. Degrad. Stab. 1997, 55, 347–365. [Google Scholar] [CrossRef]
- Kempe, M.; Jorgensen, G.J.; Terwilliger, K.M.; McMahon, T.J.; Kennedy, C.E.; Borek, T.T. Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices. Sol. Energy Mater. Sol. Cells 2007, 91, 315–329. [Google Scholar] [CrossRef]
- Peike, C.; Hülsmann, P.; Blüml, M.; Schmid, P.; Weiß, K.-A.; Köhl, M. Impact of permeation properties and backsheet–encapsulant interactions on the reliability of PV modules. ISRN Renew. Energ. 2012, 2012, 459731. [Google Scholar] [CrossRef][Green Version]
- Peike, C.; Häldrich, I.; Weiß, K.-A.; Dürr, I. Overview of PV module encapsulation materials. Photovolt. Int. 2013, 19, 85–92. [Google Scholar]
- Chapuis, V.; Pélisset, S.; Raeis-Barnéoud, M.; Li, H.-Y.; Ballif, C.; Perret-Aebi, L.-E. Compressive-shear adhesion characterization of polyvinylbutyral and ethylene-vinyl acetate at different curing times before and after exposure to damp-heat conditions. Prog. Photovolt. Res. Appl. 2014, 22, 405–414. [Google Scholar] [CrossRef][Green Version]
- Hara, K.; Jonai, S.; Masuda, A. Potential-induced degradation in photovoltaic modules based on n-type single crystalline Si solar cells. Sol. Energy Mater. Sol. Cells 2015, 140, 361–365. [Google Scholar] [CrossRef]
- Kapur, J.; Stika, K.M.; Westphal, C.S.; Norwood, J.L.; Hamzavytehrany, B. Prevention of potential-induced degradation with thin ionomer film. IEEE J. Photovolt. 2015, 5, 219–223. [Google Scholar] [CrossRef]
- McIntosh, K.R.; Powell, N.E.; Norris, A.W.; Cotsell, J.N.; Ketola, B.M. The effect of damp-heat and UV aging tests on the optical properties of silicone and EVA encapsulants. Prog. Photovolt. Res. Appl. 2011, 19, 294–300. [Google Scholar] [CrossRef]
- Hara, K.; Ohwada, H.; Furihata, T.; Masuda, A. Durable crystalline Si photovoltaic modules based on silicone-sheet encapsulants. Jpn. J. Appl. Phys. 2018, 57, 027101. [Google Scholar] [CrossRef]
- López-Escalante, M.C.; Fernández-Rodríguez, M.; Caballero, L.J.; Martína, F.; Gabás, M.; Ramos-Barrado, J.R. Novel encapsulant architecture on the road to photovoltaic module power output increase. Appl. Energy 2018, 228, 1901–1910. [Google Scholar] [CrossRef]
- Omazic, A.; Oreski, G.; Halwachs, M.; Eder, G.C.; Hirschl, C.; Neumaier, C.L.; Pinter, G.; Erceg, M. Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review. Sol. Energy Mater. Sol. Cells 2019, 192, 123–133. [Google Scholar] [CrossRef]
- Mahmood, Q.; Zeng, Y.; Yue, E.; Solan, G.A.; Liang, T.; Sun, W.-H. Ultra-high molecular weight elastomeric polyethylene using and electronically and sterically enhanced nickel catalyst. Polym. Chem. 2017, 6, 6416–6430. [Google Scholar] [CrossRef][Green Version]
- Mahmood, Q.; Sun, W.-H. N,N-chelated nickel catalysts for highly branched polyolefin elastomers: A survey. R. Soc. Open Sci. 2018, 5, 180367. [Google Scholar] [CrossRef][Green Version]
- Mochane, M.J.; Mokhena, T.C.; Motaung, T.E.; Linganiso, L.Z. Shape stabilized phase change materials of polyolefin/wax blends and their composites. J. Therm. Anal. Calorim. 2020, 139, 2951–2963. [Google Scholar] [CrossRef]
- Wen, X.; Szymańska, K.; Chen, X.; Mijowska, E. Nanosized carbon black as synergist in PP/POE-MA/IFR system for simultaneously improving thermal, electrical and mechanical properties. J. Therm. Anal. Calorim. 2020, 139, 1091–1098. [Google Scholar] [CrossRef][Green Version]
- Park, J.-H.; Kong, W.-S.; Lee, S.-H.; Lee, J.W.; Yoon, H.G.; Lee, B.Y. Characterization and application of propylene grafted hydrogenated dicyclopentadiene hydrocarbon resin. Int. J. Adhes. Adhes. 2016, 68, 326–332. [Google Scholar] [CrossRef]
- Long, R.; Long, S.; Zou, L.; Huang, Z.; Huang, Y.; Hu, C.; Li, D.; Li, X. Rheology, crystallization, and enhanced mechanical properties of uniaxially oriented ethylene-octene copolymer/polyolefin elastomer blends. Polymer 2022, 243, 124655. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Shi, Y.; Wang, C.-C.; Cheng, J.-H.; Wang, Y.; Shao, W.-J.; Liu, L.-Z. Crystallization, structure, and enhanced mechanical property of ethylene-octene elastomer crosslinked with dicumyl peroxide. J. Appl. Polym. Sci. 2021, 138, e50651. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, Y.; Xiong, Y.; Qin, T.; Zhu, Y.; Deng, H.; Qin, J.; Shi, X.; Zhang, G. Chemically crosslinked crystalline thermoplastic polyolefin elastomer with good elasticity and improved thermos-mechanical properties. Polymer 2022, 254, 125075. [Google Scholar] [CrossRef]
- Kong, W.-S.; Ju, T.-J.; Park, J.-H.; Lee, J.-W.; Yoon, H.G. Modification of biaxially oriented polypropylene films using dicyclopentadiene based hydrogenated hydrocarbon resin. J. Polym. Eng. 2015, 35, 859–866. [Google Scholar] [CrossRef]
- Lin, B.; Zheng, C.; Zhu, Q.; Xie, F. A polyolefin encapsulant material designed for photovoltaic modules: From perspectives of peel strength and transmittance. J. Therm. Anal. Calorim. 2020, 140, 2259–2265. [Google Scholar] [CrossRef]
- Cimmino, S.; Silvestre, C.; della Vecchia, G. Morphology and properties of isotactic polypropylene modified with hydrocarbon resin MBG273. I. binary blends. J. Appl. Polym. Sci. 2004, 92, 3454–3465. [Google Scholar] [CrossRef]
- Oreski, G.; Wallner, G.M. Delamination behaviour of multi-layer films for PV encapsulation. Sol. Energy Mater. Sol. Cells 2005, 89, 139–151. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, J.; Betts, T.R.; Gottschalg, R. Degradation of interfacial adhesion strength within photovoltaic mini-modules during damp-heat exposure. Prog. Photovolt. Res. Appl. 2014, 22, 796–809. [Google Scholar] [CrossRef][Green Version]
- Jentsch, A.; Eichhorn, K.; Voit, B. Influence of typical stabilizers on the aging behavior of EVA foils for photovoltaic applications during artificial UV-weathering. Polym. Test. 2015, 44, 242–247. [Google Scholar] [CrossRef]
- Jaunich, M.; Bohning, M.; Braun, U.; Teteris, G.; Stark, W. Investigation of the curing state of ethylene/vinyl acetate copolymer (EVA) for photovoltaic applications by gel content determination, rheology, DSC and FTIR. Polym. Test. 2016, 52, 133–140. [Google Scholar] [CrossRef]
- Yao, J.; Ziegmann, G. Equivalence of moisture and temperature in accelerated test method and its application in prediction of long-term properties of glass-fiber reinforced epoxy pipe specimen. Polym. Test. 2006, 25, 149–157. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, S. Moisture absorption and diffusion characterization of molding compound. J. Electron. Packag. 2005, 127, 460–465. [Google Scholar] [CrossRef]
m-HCR Content (phr) | Before Crosslinking | After Crosslinking | ||||
---|---|---|---|---|---|---|
Tg (°C) | Tm (°C) | Tc (°C) | Tg (°C) | Tm (°C) | Tc (°C) | |
0 | −53.2 | 65.4 | 37.0 | −53.3 | 56.2 | 31.5 |
3 | −51.0 | 64.1 | 36.3 | −51.8 | 57.8 | 31.78 |
6 | −47.6 | 64.7 | 34.8 | −51.0 | 58.4 | 31.9 |
9 | −49.7 | 64.0 | 35.1 | −48.7 | 58.6 | 31.3 |
12 | −42.2 | 65.5 | 31.6 | −48.1 | 58.4 | 31.3 |
m-HCR Content (phr) | Before the Damp-Heat Test | After the Damp-Heat Test | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Jsc (mA/cm2) | Isc (mA) | Voc (V) | Fill Factor (%) | PCE (%) | Jsc (mA/cm2) | Isc (mA) | Voc (V) | Fill Factor (%) | PCE (%) | |
0 | 2.36 | 354.5 | 11.1 | 75.1 | 19.8 | 2.29 | 343.7 | 11.1 | 75.9 | 19.3 |
3 | 2.32 | 348.2 | 11.1 | 74.7 | 19.2 | 2.33 | 349.1 | 11.1 | 76.8 | 19.8 |
6 | 2.47 | 370.3 | 11.3 | 74.2 | 20.7 | 2.45 | 368.1 | 11.2 | 75.4 | 20.7 |
9 | 2.33 | 349.3 | 11.2 | 75.5 | 19.6 | 2.20 | 329.9 | 11.2 | 77.3 | 19.0 |
12 | 2.47 | 370.3 | 11.3 | 72.9 | 20.3 | 2.37 | 355.3 | 11.3 | 76.3 | 20.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.H.; Hwang, S.-H. Construction and Characterization of Polyolefin Elastomer Blends with Chemically Modified Hydrocarbon Resin as a Photovoltaic Module Encapsulant. Polymers 2022, 14, 4620. https://doi.org/10.3390/polym14214620
Park JH, Hwang S-H. Construction and Characterization of Polyolefin Elastomer Blends with Chemically Modified Hydrocarbon Resin as a Photovoltaic Module Encapsulant. Polymers. 2022; 14(21):4620. https://doi.org/10.3390/polym14214620
Chicago/Turabian StylePark, Jin Hwan, and Seok-Ho Hwang. 2022. "Construction and Characterization of Polyolefin Elastomer Blends with Chemically Modified Hydrocarbon Resin as a Photovoltaic Module Encapsulant" Polymers 14, no. 21: 4620. https://doi.org/10.3390/polym14214620