Multifunctionality of Polypyrrole Polyethyleneoxide Composites: Concurrent Sensing, Actuation and Energy Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrochemical Synthesis of PPy Blends
2.3. Linear Actuation
2.4. Characterization
3. Results and Discussion
3.1. Characterization
3.1.1. Morphology and Conductivity of Polypyrrole/Dodecylbenzenesulfonate (PPy/DBS) and PPy-PEO (Poly(ethylene Oxide))/DBS Operated in Different Electrolytes
3.1.2. Energy-Dispersive X-ray (EDX) Spectroscopy
3.2. Linear Actuation Controlled by Cyclic Voltammetry
3.3. Energy Storage
3.4. Sensor Calibration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Melling, D.; Martinez, J.G.; Jager, E.W.H. Conjugated Polymer Actuators and Devices: Progress and Opportunities. Adv. Mater. 2019, 31, 1808210. [Google Scholar] [CrossRef] [PubMed]
- Maziz, A.; Concas, A.; Khaldi, A.; Stålhand, J.; Persson, N.-K.; Jager, E.W.H. Knitting and weaving artificial muscles. Sci. Adv. 2017, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, R.; Alici, G.; Li, W. An effective methodology to solve inverse kinematics of electroactive polymer actuators modelled as active and soft robotic structures. Mech. Mach. Theory 2013, 67, 94–110. [Google Scholar] [CrossRef]
- Jager, E.W.H.; Smela, E.; Ingana, O. Microfabricating Conjugated Polymer Actuators. Science 2000, 290, 1540–1545. [Google Scholar] [CrossRef]
- Smela, E. Conjugated polymer actuators for biomedical applications. Adv. Mater. 2003, 15, 481–494. [Google Scholar] [CrossRef]
- Bay, L.; Jacobsen, T.; Skaarup, S.; West, K. Mechanism of actuation in conducting polymers: Osmotic expansion. J. Phys. Chem. B 2001, 105, 8492–8497. [Google Scholar] [CrossRef]
- Otero, T.F. Conducting Polymers: Bioinspired Intelligent Materials and Devices; RSC: Cambridge, UK, 2016; pp. 26–58. [Google Scholar]
- Martinez, J.G.; Otero, T.F.; Jager, E.W.H. Effect of the electrolyte concentration and substrate on conducting polymer actuators. Langmuir 2014, 30, 3894–3904. [Google Scholar] [CrossRef]
- Otero, T.F.; Martinez, J.G. Physical and chemical awareness from sensing polymeric artificial muscles. Experiments and modeling. Prog. Polym. Sci. 2015, 44, 62–78. [Google Scholar] [CrossRef]
- Harjo, M.; Zondaka, Z.; Leemets, K.; Järvekülg, M.; Tamm, T.; Kiefer, R. Polypyrrole-coated fiber-scaffolds: Concurrent linear actuation and sensing. J. Appl. Polym. Sci. 2020, 48533, 1–8. [Google Scholar] [CrossRef]
- Otero, T.F.; Martinez, J.G. Artificial muscles: A tool to quantify exchanged solvent during biomimetic reactions. Chem. Mater. 2012, 24, 4093–4099. [Google Scholar] [CrossRef]
- Ghosh, S.; Inganäs, O. Networks of Electron-Conducting Polymer in Matrices of Ion-Conducting Polymers Applications to Fast Electrodes. Electrochem. Solid-State Lett. 2000, 3, 213–2015. [Google Scholar] [CrossRef]
- Khadka, R.; Zhang, P.; Nguyen, N.T.; Tamm, T.; Travas-Sejdic, J.; Otero, T.F.; Kiefer, R. Role of polyethylene oxide content in polypyrrole linear actuators. Mater. Today Commun. 2020, 23, 100908. [Google Scholar] [CrossRef]
- Otero, T.F.; Boyano, I. Comparative study of conducting polymers by the ESCR model. J. Phys. Chem. B 2003, 107, 6730–6738. [Google Scholar] [CrossRef]
- Valero, L.; Otero, T.F.; Martinez, J.G.; Martínez, J.G. Exchanged Cations and Water during Reactions in Polypyrrole Macroions from Artificial Muscles. ChemPhysChem 2014, 15, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Harjo, M.; Tamm, T.; Anbarjafari, G.; Kiefer, R. Hardware and Software Development for Isotonic Strain and Isometric Stress Measurements of Linear Ionic Actuators. Polymers 2019, 11, 1054. [Google Scholar] [CrossRef] [PubMed]
- Varma, S.; Rempe, S.B. Coordination numbers of alkali metal ions in aqueous solutions. Biophys. Chem. 2006, 124, 192–199. [Google Scholar] [CrossRef]
- Põldsalu, I.; Rohtlaid, K.; Plesse, C.; Vidal, F.; Nguyen, T.N.; Anna-Liisa, P.; Tarmo, T.; Rudolf, K. Printed PEDOT: PSS Trilayer: Mechanism Evaluation. Materials 2020, 13, 491. [Google Scholar]
- Finney, J.L.; Turner, J. Direct measurement by neutron diffraction of the solvation of polar and apolar molecules: The hydration of the tetramethylammonium ion. Faraday Discuss. Chem. Soc. 1988, 85, 125–135. [Google Scholar] [CrossRef]
- Slusher, J.T.; Cummings, P.T. Molecular simulation study of tetraalkylammonium halides. 1. Solvation structure and hydrogen bonding in aqueous solutions. J. Phys. Chem. B 1997, 101, 3818–3826. [Google Scholar] [CrossRef]
- Khadka, R.; Aydemir, N.; Kesküla, A.; Tamm, T.; Travas-Sejdic, J.; Kiefer, R. Enhancement of polypyrrole linear actuation with poly(ethylene oxide). Synth. Met. 2017, 232, 1–7. [Google Scholar] [CrossRef]
- Kiefer, R.; Khadka, R.; Travas-Sejdic, J. Poly(ethylene oxide) in polypyrrole doped dodecylbenzenesulfonate: Characterisation and linear actuation. Int. J. Nanotechnol. 2018, 15, 689–694. [Google Scholar] [CrossRef]
- Zondaka, Z.; Harjo, M.; Khan, A.; Khanh, T.T.; Tamm, T.; Kiefer, R. Optimal phosphotungstinate concentration for polypyrrole linear actuation and energy storage. Multifunct. Mater. 2018, 1, 14003. [Google Scholar] [CrossRef]
- An, K.H.; Jeon, K.K.; Heo, J.K.; Lim, S.C.; Bae, D.J.; Lee, Y.H. High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole. J. Electrochem. Soc. 2002, 149, 1058–1062. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, C.Y.; Chang, H.T. Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J. Power Sources 2011, 196, 7874–7877. [Google Scholar] [CrossRef]
- Ma, D.; Wang, Y.; Han, X.; Xu, S.; Wang, J. Applicable tolerance evaluations of ion-doped carbon nanotube/polypyrrole electrode under adverse solution conditions for capacitive deionization process. Sep. Purif. Technol. 2018, 201, 167–178. [Google Scholar] [CrossRef]
- Sharma, R.K.; Rastogi, A.C.; Desu, S.B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem. Commun. 2008, 10, 268–272. [Google Scholar] [CrossRef]
- García-Córdova, F.; Valero, L.; Ismail, Y.A.; Otero, T.F. Biomimetic polypyrrole based all three-in-one triple layer sensing actuators exchanging cations. J. Mater. Chem. 2011, 21, 17265–17272. [Google Scholar] [CrossRef]
- Otero, T.F.; Cortés, M.T. A sensing muscle. Sens. Actuators B Chem. 2003, 96, 152–156. [Google Scholar] [CrossRef]
- Martinez, J.G.; Otero, T.F. Structural electrochemistry. Chronopotentiometric responses from rising compacted polypyrrole electrodes: Experiments and model. RSC Adv. 2014, 4, 29139. [Google Scholar] [CrossRef]
- Wang, C.; Wei, Z.; Feng, M.; Wang, L.; Wang, Z. Comparative antioxidant status in freshwater fish Carassius auratus exposed to eight imidazolium bromide ionic liquids: A combined experimental and theoretical study. Ecotoxicol. Environ. Saf. 2014, 102, 187–195. [Google Scholar] [CrossRef]
- Mori, I.C.; Arias-Barreiro, C.R.; Koutsaftis, A.; Ogo, A.; Kawano, T.; Yoshizuka, K.; Inayat-Hussain, S.H.; Aoyama, I. Toxicity of tetramethylammonium hydroxide to aquatic organisms and its synergistic action with potassium iodide. Chemosphere 2015, 120, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [PubMed]
Electrolyte | PPy-PEO/DBS (S cm−1) | PPy/DBS (S cm−1) |
---|---|---|
Direct after Polymerization | 17.7 ± 1.3 | 7.9 ± 0.6 |
LiCF3SO3 | 9.3 ± 0.4 | 4.8 ± 0.2 |
NaCl | 8.6 ± 0.6 | 4.6 ± 0.3 |
EDMICF3SO3 | 6.3 ± 0.3 | 2.8 ± 0.2 |
TMACl | 9.0 ± 0.5 | 4.4 ± 0.3 |
Electrolytes | Linear Equation of Electrical Energy Ue (J g−1) = | Linear Equation of Potential at Reduction −Ered (V) = | Strain ε [%]s |
---|---|---|---|
LiCF3SO3 | −1.12 ± 0.09 j (A g−1) | 0.1031 ± 0.005 j (A g−1) | 3.1 ± 0.25 j |
NaCl | −0.91 ± 0.07 j (A g−1) | 0.14 ± 0.008 j (A g−1) | 2.02 ± 0.14 j |
TMACl | −0.60 ± 0.04 j (A g−1) | 0.19 ± 0.013 j (A g−1) | 2.51 ± 0.17 j |
EDMICF3SO3 | −1.09 ± 0.08 j (A g−1) | 0.208 ± 0.014 j (A g−1) | 1.55 ± 0.09 j |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khuyen, N.Q.; Kiefer, R.; Zondaka, Z.; Anbarjafari, G.; Peikolainen, A.-L.; Otero, T.F.; Tamm, T. Multifunctionality of Polypyrrole Polyethyleneoxide Composites: Concurrent Sensing, Actuation and Energy Storage. Polymers 2020, 12, 2060. https://doi.org/10.3390/polym12092060
Khuyen NQ, Kiefer R, Zondaka Z, Anbarjafari G, Peikolainen A-L, Otero TF, Tamm T. Multifunctionality of Polypyrrole Polyethyleneoxide Composites: Concurrent Sensing, Actuation and Energy Storage. Polymers. 2020; 12(9):2060. https://doi.org/10.3390/polym12092060
Chicago/Turabian StyleKhuyen, Nguyen Quang, Rudolf Kiefer, Zane Zondaka, Gholamreza Anbarjafari, Anna-Liisa Peikolainen, Toribio F. Otero, and Tarmo Tamm. 2020. "Multifunctionality of Polypyrrole Polyethyleneoxide Composites: Concurrent Sensing, Actuation and Energy Storage" Polymers 12, no. 9: 2060. https://doi.org/10.3390/polym12092060
APA StyleKhuyen, N. Q., Kiefer, R., Zondaka, Z., Anbarjafari, G., Peikolainen, A.-L., Otero, T. F., & Tamm, T. (2020). Multifunctionality of Polypyrrole Polyethyleneoxide Composites: Concurrent Sensing, Actuation and Energy Storage. Polymers, 12(9), 2060. https://doi.org/10.3390/polym12092060