You are currently on the new version of our website. Access the old version .
PolymersPolymers
  • Article
  • Open Access

20 February 2019

Synthesis, Characterization, and Antifungal Activity of Schiff Bases of Inulin Bearing Pyridine ring

,
,
,
,
,
and
1
Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
*
Authors to whom correspondence should be addressed.

Abstract

As a renewable, biocompatible, and biodegradable polysaccharide, inulin has a good solubility in water and some physiological functions. Chemical modification is one of the important methods to improve the bioactivity of inulin. In this paper, based on 6-amino-6-deoxy-3,4-acetyl inulin (3), three kinds of Schiff bases of inulin bearing pyridine rings were successfully designed and synthesized. Detailed structural characterization was carried out using FTIR, 13C NMR, and 1H NMR spectroscopy, and elemental analysis. Moreover, the antifungal activity of Schiff bases of inulin against three plant pathogenic fungi, including Botrytis cinerea, Fusarium oxysporum f.sp.niveum, and Phomopsis asparagi, were evaluated using in vitro hypha measurements. Inulin, as a natural polysaccharide, did not possess any antifungal activity at the tested concentration against the targeted fungi. Compared with inulin and the intermediate product 6-amino-6-deoxy-3,4-acetyl inulin (3), all the synthesized Schiff bases of inulin derivatives with >54.0% inhibitory index at 2.0 mg/mL exhibited enhanced antifungal activity. 3NS, with an inhibitory index of 77.0% exhibited good antifungal activity against Botrytis cinerea at 2.0 mg/mL. The synthesized Schiff bases of inulin bearing pyridine rings can be prepared for novel antifungal agents to expand the application of inulin.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.