Next Article in Journal
Enhancement by Metallic Tube Filling of the Mechanical Properties of Electromagnetic Wave Absorbent Polymethacrylimide Foam
Previous Article in Journal
Contraction of Entangled Polymers After Large Step Shear Deformations in Slip-Link Simulations
Open AccessArticle

Synthesis, Characterization, and Antifungal Activity of Schiff Bases of Inulin Bearing Pyridine ring

1
Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
*
Authors to whom correspondence should be addressed.
Polymers 2019, 11(2), 371; https://doi.org/10.3390/polym11020371
Received: 19 December 2018 / Revised: 1 February 2019 / Accepted: 14 February 2019 / Published: 20 February 2019
As a renewable, biocompatible, and biodegradable polysaccharide, inulin has a good solubility in water and some physiological functions. Chemical modification is one of the important methods to improve the bioactivity of inulin. In this paper, based on 6-amino-6-deoxy-3,4-acetyl inulin (3), three kinds of Schiff bases of inulin bearing pyridine rings were successfully designed and synthesized. Detailed structural characterization was carried out using FTIR, 13C NMR, and 1H NMR spectroscopy, and elemental analysis. Moreover, the antifungal activity of Schiff bases of inulin against three plant pathogenic fungi, including Botrytis cinerea, Fusarium oxysporum f.sp.niveum, and Phomopsis asparagi, were evaluated using in vitro hypha measurements. Inulin, as a natural polysaccharide, did not possess any antifungal activity at the tested concentration against the targeted fungi. Compared with inulin and the intermediate product 6-amino-6-deoxy-3,4-acetyl inulin (3), all the synthesized Schiff bases of inulin derivatives with >54.0% inhibitory index at 2.0 mg/mL exhibited enhanced antifungal activity. 3NS, with an inhibitory index of 77.0% exhibited good antifungal activity against Botrytis cinerea at 2.0 mg/mL. The synthesized Schiff bases of inulin bearing pyridine rings can be prepared for novel antifungal agents to expand the application of inulin. View Full-Text
Keywords: inulin; Schiff base; antifungal inulin; Schiff base; antifungal
Show Figures

Graphical abstract

MDPI and ACS Style

Wei, L.; Tan, W.; Zhang, J.; Mi, Y.; Dong, F.; Li, Q.; Guo, Z. Synthesis, Characterization, and Antifungal Activity of Schiff Bases of Inulin Bearing Pyridine ring. Polymers 2019, 11, 371.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop