Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vohra, V.; Calzaferri, G.; Destri, S.; Pasini, M.; Porzio, W.; Botta, C. Toward White Light Emission through Efficient Two-Step Energy Transfer in Hybrid Nanofibers. ACS Nano 2010, 4, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Qin, C.; Cheng, Y.; Xie, Z.; Geng, Y.; Jing, X.; Wang, F.; Wang, L. White Electroluminescence from a Phosphonate-Functionalized Single-Polymer System with Electron-Trapping Effect. Adv. Mater. 2009, 21, 3682–3688. [Google Scholar] [CrossRef]
- Wen, Y.; Sheng, T.; Zhu, X.; Zhuo, C.; Su, S.; Li, H.; Hu, S.; Zhu, Q.L.; Wu, X. Introduction of Red-Green-Blue Fluorescent Dyes into a Metal-Organic Framework for Tunable White Light Emission. Adv. Mater. 2017, 29, 1700778. [Google Scholar] [CrossRef] [PubMed]
- Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. White Light-Emitting Organic Electroluminescent Devices Using the poly(N-Vinylcarbazole) Emitter Layer Doped with Three Fluorescent Dyes. Appl. Phys. Lett. 1994, 64, 815–817. [Google Scholar] [CrossRef]
- Kamtekar, K.T.; Monkman, A.P.; Bryce, M.R. Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDS). Adv. Mater. 2010, 22, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, C.-F.; Ling, L.-T.; Chen, S. Fluorescent Nanomaterial-Derived White Light-Emitting Diodes: What’s Going on. J. Mater. Chem. C 2014, 2, 4358–4373. [Google Scholar] [CrossRef]
- Kubo, Y.; Nishiyabu, R. White-Light Emissive Materials Based on Dynamic Polymerization in Supramolecular Chemistry. Polymer 2017, 128, 257–275. [Google Scholar] [CrossRef]
- Férey, G. Hybrid Porous Solids: Past, Present, Future. Chem. Soc. Rev. 2008, 37, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-P.; Chen, X.-M. Metal-Organic Frameworks: From Design to Materials. In Metal-Organic Frameworks for Photonic Applications; Chen, B., Qian, G., Eds.; Springer: Berlin, Germany, 2014; pp. 1–26. ISBN 978-3-642-44967-3. [Google Scholar]
- Czaja, A.U.; Trukhan, N.; Müller, U. Industrial Applications of Metal-organic Frameworks. Chem. Soc. Rev. 2009, 38, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.N.; Zhang, W.X.; Lin, Y.Y.; Zheng, Y.Z.; Chen, X.M. A Dynamic Porous Magnet Exhibiting Reversible Guest-Induced Magnetic Behavior Modulation. Adv. Mater. 2007, 19, 1494–1498. [Google Scholar] [CrossRef]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P. Metal-Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232–1268. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metal-Organic Frameworks as Platforms for Functional Materials. Acc. Chem. Res. 2016, 49, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-M.; Liang, W.; Li, S.; Zou, F.; Bhaway, S.M.; Qiang, Z.; Gao, M.; Vogt, B.D.; Zhu, Y. A Nitrogen Doped Carbonized Metal-organic Framework for High Stability Room Temperature Sodium-sulfur Batteries. J. Mater. Chem. A 2016, 4, 12471–12478. [Google Scholar] [CrossRef]
- Liu, X.; Zou, F.; Liu, K.; Qiang, Z.; Taubert, C.J.; Ustriyana, P.; Vogt, B.D.; Zhu, Y. A Binary Metal Organic Framework Derived Hierarchical Hollow Ni3S2/Co9S8 /N-Doped Carbon Composite with Superior Sodium Storage Performance. J. Mater. Chem. A 2017, 5, 11781–11787. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent Metal-Organic Frameworks. Met. Fram. Appl. Catal. Gas Storage 2011, 5, 267–308. [Google Scholar] [CrossRef] [PubMed]
- You, L.-X.; Zhao, B.-B.; Liu, H.-J.; Wang, S.-J.; Xiong, G.; He, Y.-K.; Ding, F.; Joos, J.J.; Smet, P.F.; Sun, Y.-G. 2D and 3D Lanthanide Metal-organic Frameworks Constructed from Three Benzenedicarboxylate Ligands: Synthesis, Structure and Luminescent Properties. CrystEngComm 2018. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Hu, Z.; Wang, G.; Uvdal, K. Coordination Polymers for Energy Transfer: Preparations, Properties, Sensing Applications, and Perspectives. Coord. Chem. Rev. 2015, 284, 206–235. [Google Scholar] [CrossRef]
- Rocha, J.; Carlos, L.D.; Paz, F.A.A.; Ananias, D. Luminescent Multifunctional Lanthanides-Based Metal-organic Frameworks. Chem. Soc. Rev. 2011, 40, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Huang, J.; Zhu, H.; Liu, L.; Feng, Y.; Hu, G.; Yu, X. Dual-Emitting Fluorescence of Eu/Zr-MOF for Ratiometric Sensing Formaldehyde. Sens. Actuators B Chem. 2017, 253, 275–282. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Du, S. Tunable Luminescence and White Light Emission of Mixed Lanthanide-organic Frameworks Based on Polycarboxylate Ligands. J. Mater. Chem. C 2016, 4, 3364–3374. [Google Scholar] [CrossRef]
- Liu, Z.-F.; Wu, M.-F.; Wang, S.-H.; Zheng, F.-K.; Wang, G.-E.; Chen, J.; Xiao, Y.; Wu, A.Q.; Guo, G.-C.; Huang, J.-S. Eu3+-Doped Tb3+ Metal-Organic Frameworks Emitting Tunable Three Primary Colors towards White Light. J. Mater. Chem. C 2013, 1, 4634–4639. [Google Scholar] [CrossRef]
- Müller, M.; Devaux, A.; Yang, C.-H.; De Cola, L.; Fischer, R.A. Highly Emissive Metal-organic Framework Composites by Host–guest Chemistry. Photochem. Photobiol. Sci. 2010, 9, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Dong, H.; Wei, C.; Zhang, W.; Yan, Y.; Zhao, Y.S. Wavelength-Tunable Microlasers Based on the Encapsulation of Organic Dye in Metal-Organic Frameworks. Adv. Mater. 2016, 28, 7424–7429. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.L.; Leong, K.; Allendorf, M.D. Charge-Transfer Guest Interactions in Luminescent MOFs: Implications for Solid-State Temperature and Environmental Sensing. Dalt. Trans. 2012, 41, 8869. [Google Scholar] [CrossRef] [PubMed]
- Horike, S.; Shimomura, S.; Kitagawa, S. Soft Porous Crystals. Nat. Chem. 2009, 1, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Sakata, Y.; Kitagawa, S. Control over Flexibility of Entangled Porous Coordination Frameworks by Molecular and Mesoscopic Chemistries. Chem. Lett. 2013, 42, 570–576. [Google Scholar] [CrossRef]
- Martínez-Martínez, V.; Furukawa, S.; Takashima, Y.; López Arbeloa, I.; Kitagawa, S. Charge Transfer and Exciplex Emissions from a Naphthalenediimide-Entangled Coordination Framework Accommodating Various Aromatic Guests. J. Phys. Chem. C 2012, 116, 26084–26090. [Google Scholar] [CrossRef]
- Takashima, Y.; Martínez, V.M.; Furukawa, S.; Kondo, M.; Shimomura, S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S. Molecular Decoding Using Luminescence from an Entangled Porous Framework. Nat. Commun. 2011, 2, 168. [Google Scholar] [CrossRef] [PubMed]
- Dinolfo, P.H.; Williams, M.E.; Stern, C.L.; Hupp, J.T. Rhenium-Based Molecular Rectangles as Frameworks for Ligand-Centered Mixed Valency and Optical Electron Transfer. J. Am. Chem. Soc. 2004, 126, 12989–13001. [Google Scholar] [CrossRef] [PubMed]
- Andric, G.; Boas, J.F.; Bond, A.M.; Fallon, G.D.; Ghiggino, K.P.; Hogan, C.F.; Hutchison, J.A.; Lee, M.A.-P.; Langford, S.J.; Pilbrow, J.R.; et al. Spectroscopy of Naphthalene Diimides and Their Anion Radicals. Aust. J. Chem. 2004, 57, 1011. [Google Scholar] [CrossRef]
- Viehbeck, A.; Goldberg, M.J.; Kovac, C.A. Electrochemical Properties of Polyimides and Related Imide Compounds. J. Electrochem. Soc. 1990, 137, 1460–1466. [Google Scholar] [CrossRef]
- Ilmet, I.; Berger, S.A. Molecular Complexes of Two Naphtalic Anhydrides with Aromatic Hydrocarbons. J. Phys. Chem. 1967, 71, 1534–1536. [Google Scholar] [CrossRef]
- Barros, T.C.; Brochsztain, S.; Toscano, V.G.; Filho, P.B.; Politi, M.J. Photophysical Characterization of a 1,4,5,8-Naphthalenediimide Derivative. J. Photochem. Photobiol. A Chem. 1997, 111, 97–104. [Google Scholar] [CrossRef]
- Bhosale, S.; Sisson, A.L.; Talukdar, P.; Fürstenberg, A.; Banerji, N.; Vauthey, E.; Bollot, G.; Mareda, J.; Röger, C.; Würthner, F.; et al. Photoproduction of Proton Gradients with π-Stacked Fluorophore Scaffolds in Lipid Bilayers. Science 2006, 313, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, V.; Sola Llano, R.; Furukawa, S.; Takashima, Y.; López Arbeloa, I.; Kitagawa, S. Enhanced Phosphorescence Emission by Incorporating Aromatic Halides into an Entangled Coordination Framework Based on Naphthalenediimide. Chemphyschem 2014, 15, 2517–2521. [Google Scholar] [CrossRef] [PubMed]
Mixture | Proportion | CIE Coordinates (x, y) | ||
---|---|---|---|---|
Powder | Crystals | Powder | Crystals | |
ethyl benzoate: p-xylene: iodobenzene | 5:1:2.6 | 2:1:1 | 0.34, 0.33 | 0.33, 0.35 |
toluene: anisole: iodobenzene | 7:4:2 | 7:4:2 | 0.35, 0.34 | 0.35, 0.34 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sola-Llano, R.; Martínez-Martínez, V.; Furukawa, S.; Takashima, Y.; López-Arbeloa, I. Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules. Polymers 2018, 10, 188. https://doi.org/10.3390/polym10020188
Sola-Llano R, Martínez-Martínez V, Furukawa S, Takashima Y, López-Arbeloa I. Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules. Polymers. 2018; 10(2):188. https://doi.org/10.3390/polym10020188
Chicago/Turabian StyleSola-Llano, Rebeca, Virginia Martínez-Martínez, Shuhei Furukawa, Yohei Takashima, and Iñigo López-Arbeloa. 2018. "Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules" Polymers 10, no. 2: 188. https://doi.org/10.3390/polym10020188
APA StyleSola-Llano, R., Martínez-Martínez, V., Furukawa, S., Takashima, Y., & López-Arbeloa, I. (2018). Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules. Polymers, 10(2), 188. https://doi.org/10.3390/polym10020188