Ammoniates of Zintl Phases: Similarities and Differences of Binary Phases A4E4 and Their Corresponding Solvates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cs4Pb4·5NH3
3.2. Cs4Ge4·9NH3
3.3. Cs4Si4·7NH3
3.4. Na4Sn4·11.5NH3
3.5. [Li(NH3)4]4Sn4·4NH3
3.6. K4.5Sn4(OH)0.5·1.75NH3
4. Discussion
4.1. NaPb Type Analogies
4.2. KGe Type Analogies
4.3. Effect of Additional Anions within Solvate Structures
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Experimental Details
Appendix A.1.1. Direct Reduction
Appendix A.1.2. Solvolysis
References
- Korber, N. Metal Anions: Defining the Zintl Border. Z. Anorg. Allg. Chem. 2012, 638, 1057–1060. [Google Scholar] [CrossRef]
- Nesper, R. The Zintl-Klemm Concept-A Historical Survey. Z. Anorg. Allg. Chem. 2014, 640, 2639–2648. [Google Scholar] [CrossRef]
- Dubois, J.M.E.; Belin-Ferre, E.E. Complex Metallic Alloys: Fundamentals and Applications; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2011. [Google Scholar]
- Wesbrook, J.H.; Fleischer, R.L. Intermetallic Compounds, Principles and Practice; Wiley: New York, NY, USA, 2002; Volume 3. [Google Scholar]
- Guloy, A.M. Polar Intermetallics and Zintl Phases along the Zintl Border. In Inorganic Chemistry in Focus III; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006. [Google Scholar]
- Zintl, E. Intermetallische Verbindungen. Angew. Chem. 1939, 52, 1–6. [Google Scholar] [CrossRef]
- Klemm, W. Metalloids and their compounds with the alkali metal. Proc. Chem. Soc. Lond. 1958, 12, 329–341. [Google Scholar]
- Gärtner, S.; Korber, N.; Poeppelmeier, K.E.; Reedijk, J.E. Main-Group Elements, Comprehensive Inorganic Chemistry II, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; Volume 140. [Google Scholar]
- Fässler, T.F. Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 2011; Volume 140. [Google Scholar]
- Marsh, R.E.; Shoemaker, D.P. The crystal structure of NaPb. Acta Cryst. 1953, 6, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Busmann, E. Das Verhalten der Alkalimetalle zu Halbmetallen. X. Die Kristallstrukturen von KSi, RbSi, CsSi, KGe, RbGe und CsGe. Z. Anorg. Allg. Chem. 1961, 313, 90–106. [Google Scholar] [CrossRef]
- Von Schnering, H.G.; Schwarz, M.; Chang, J.-H.; Peters, K.; Peters, E.-M.; Nesper, R. Refinement of the crystal structures of the tetrahedrotetrasilicides K4Si4, Rb4Si4 and Cs4Si4. Z. Kristallogr. NCS 2005, 220, 525–527. [Google Scholar] [CrossRef]
- Von Schnering, H.G.; Llanos, J.; Chang, J.H.; Peters, K.; Peters, E.M.; Nesper, R. Refinement of the crystal structures of the tetrahedro-tetragermanides K4Ge4, Rb4Ge4 and Cs4Ge4. Z. Kristallogr. NCS 2005, 220, 324–326. [Google Scholar] [CrossRef]
- Schäfer, R.; Klemm, W. Das Verhalten der Alkalimetalle zu Halbmetallen. IX. Weitere Beiträge zur Kenntnis der Silicide und Germanide der Alkalimetalle. Z. Anorg. Allg. Chem. 1961, 312, 214–220. [Google Scholar] [CrossRef]
- Hohmann, E. Silicide und Germanide der Alkalimetalle. Z. Anorg. Allg. Chem. 1948, 257, 113–126. [Google Scholar] [CrossRef]
- Witte, J.; von Schnering, H.G. Die Kristallstruktur von NaSi und NaGe. Z. Anorg. Allg. Chem. 1964, 327, 260. [Google Scholar] [CrossRef]
- Goebel, T.; Ormeci, A.; Pecher, O.; Haarmann, F. The Silicides M4Si4 with M = Na, K, Rb, Cs, and Ba2Si4–NMR Spectroscopy and Quantum Mechanical Calculations. Z. Anorg. Allg. Chem. 2012, 638, 1437–1445. [Google Scholar] [CrossRef]
- Baitinger, M.; Grin, Y.; von Schnering, H.G.; Kniep, R. Crystal structure Rb4Sn4 and Cs4Sn4. Z. Kristallogr. New Cryst. Struct. 1999, 214, 457–458. [Google Scholar]
- Grin, Y.; Baitinger, M.; Kniep, R.; von Schnering, H.G. Redetermination of the crystal structure of tetrasodium tetrahedrotetrastannide, Na4Sn4 and tetrapotassium tetrahedro-tetrastannide, K4Sn4. Z. Kristallogr New Cryst. Struct. 1999, 214, 453–454. [Google Scholar] [CrossRef]
- Baitinger, M.; Peters, K.; Somer, M.; Carrillo-Cabrera, W.; Grin, Y.; Kniep, R.; von Schnering, H.G. Crystal structure of tetrarubidium tetrahedro-tetraplumbide, Rb4Pb4 and of tetracaesium tetrahedro-telraplumbide, Cs4Pb4. Z. Kristallogr. NCS 1999, 214, 455–456. [Google Scholar]
- Hewaidy, I.F.; Busmann, E.; Klemm, W. Die Struktur der AB-Verbindungen der schweren Alkalimetalle mit Zinn und Blei. Z. Anorg. Allg. Chem. 1964, 328, 283–293. [Google Scholar] [CrossRef]
- Goebel, T.; Prots, Y.; Haarmann, F. Refinement of the crystal structure of tetrasodium tetrasilicide, Na4Si4. Z. Kristallogr. NCS 2008, 223, 187–188. [Google Scholar] [CrossRef]
- Evers, J.; Oehlinger, G.; Sextl, G. LiSi, a Unique Zintl Phase—Although Stable, It Long Evaded Synthesis. Eur. J. Solid State Inorg. Chem. 1997, 34, 773–784. [Google Scholar]
- Menges, E.; Hopf, V.; Schaefer, H.; Weiss, A. Die Kristallstruktur von LiGe—ein neuartiger, dreidimensionaler Verband von Element (IV)-atomen. Z. Naturf. B. 1969, 24, 1351–1352. [Google Scholar] [CrossRef]
- Holleman, A.F.; Wiberg, E.; Wiberg, N. Anorganische Chemie, 103rd ed.; Walter de Gruyter GmbH: Berlin, Germany, 2017. [Google Scholar]
- Müller, W.; Schäfer, H. Crystal-structure of LiSn. Z. Naturforsch. B 1973, B 28, 246–248. [Google Scholar]
- Müller, W.; Volk, K. Die Struktur des beta-NaSn. Z. Naturforsch. 1977, B 32, 709–710. [Google Scholar]
- Nowotny, H. The structure of LiPb. Z. Metallkunde 1941, 33, 388. [Google Scholar]
- Neumeier, M.; Fendt, F.; Gaertner, S.; Koch, C.; Gaertner, T.; Korber, N.; Gschwind, R.M. Detection of the Elusive Highly Charged Zintl Ions [Si4]4− and [Sn4]4− in Liquid Ammonia by NMR Spectroscopy. Angew. Chem. Int. Ed. 2013, 52, 4483–4486. [Google Scholar] [CrossRef] [PubMed]
- Wiesler, K.; Brandl, K.; Fleischmann, A.; Korber, N. Tetrahedral [Tt4]4− Zintl Anions through Solution Chemistry: Syntheses and Crystal Structures of the Ammoniates Rb4Sn4·2NH3, Cs4Sn4·2NH3, and Rb4Pb4·2NH3. Z. Anorg. Allg. Chem. 2009, 635, 508–512. [Google Scholar] [CrossRef]
- Fleischmann, A. Synthese und Strukturelle Charakterisierung homoatomarer Polyanionen der vierten und fünften Hauptgruppe durch Reduktion in flüssigem Ammoniak. Ph.D. Thesis, University of Regensburg, Regensburg, Germany, 2002. [Google Scholar]
- Waibel, M.; Fässler, T.F. First Incorporation of the Tetrahedral [Sn4]4- Cluster into a Discrete Solvate Na4[Sn4](NH3)13 from Solutions of Na4Sn4 in Liquid Ammonia. Z. Naturforsch. B 2013, 68, 732–734. [Google Scholar] [CrossRef]
- Lorenz, C.; Gärtner, S.; Korber, N. [Si4]4−in Solution–First Solvate Crystal Structure of the Ligand-free Tetrasilicide Tetraanion in Rb1. 2K2. 8Si4·7NH3. Z. Anorg. Allg. Chem. 2017, 643, 141–145. [Google Scholar] [CrossRef]
- Fendt, F. Untersuchungen zum Lösungs-und Reaktionsverhalten von Polystanniden und-siliciden in flüssigem Ammoniak. Ph.D. Thesis, University of Regensburg, Regensburg, Germany, 2016. [Google Scholar]
- Joseph, S.; Suchentrunk, C.; Kraus, F.; Korber, N. [Si9]4−Anions in Solution–Structures of the Solvates Rb4Si9·4.75 NH3 and [Rb (18-crown-6)] Rb3Si9·4NH3, and Chemical Bonding in [Si9]4−. Eur. J. Inorg. Chem. 2009, 2009, 4641–4647. [Google Scholar] [CrossRef]
- Joseph, S.; Suchentrunk, C.; Korber, N. Dissolving Silicides: Syntheses and Crystal Structures of New Ammoniates Containing Si52− and Si94− Polyanions and the Role of Ammonia of Crystallisation. Z. Naturforsch. 2010, B65, 1059–1065. [Google Scholar] [CrossRef]
- Suchentrunk, C.; Daniels, J.; Somer, M.; Carrillo-Cabrera, W.; Korber, N. Synthesis and Crystal Structures of the Polygermanide Ammoniates K4Ge9·9 NH3, Rb4Ge9·5 NH3 And Cs6Ge18·4 NH3. Z. Naturforsch. 2005, B60, 277–283. [Google Scholar]
- Korber, N.; Fleischmann, A. Synthesis and crystal structure of [Li(NH3)4]4[Sn9]·NH3 and [Li(NH3)4]4[Pb9]·NH3. Dalton Trans. 2001, 4, 383–385. [Google Scholar] [CrossRef]
- Carrillo-Cabrera, W.; Aydemir, U.; Somer, M.; Kircali, A.; Fassler, T.F.; Hoffmann, S.D. Cs4Ge9·en: A Novel Compound with [Ge9]4− Clusters–Synthesis, Crystal Structure and Vibrational Spectra. Z. Anorg. Allg. Chem. 2007, 633, 1575–1580. [Google Scholar] [CrossRef]
- Somer, M.; Carrillo-Cabrera, W.; Peters, E.M.; Peters, K.; von Schnering, H.G. Tetrarubidium Nonagermanide (4–) Ethylenediamine, Rb4[Ge9][en]. Z. Anorg. Allg. Chem. 1998, 624, 1915–1921. [Google Scholar] [CrossRef]
- Edwards, P.A.; Corbett, J.D. Stable homopolyatomic anions. Synthesis and crystal structures of salts containing the pentaplumbide (2-) and pentastannide (2-) anions. Inorg. Chem. 1977, 16, 903–907. [Google Scholar] [CrossRef]
- Goicoechea, J.M.; Sevov, S.C. Naked Deltahedral Silicon Clusters in Solution: Synthesis and Characterization of Si93− and Si52−. J. Am. Chem. Soc. 2004, 126, 6860–6861. [Google Scholar] [CrossRef] [PubMed]
- Suchentrunk, C.; Korber, N. Ge52− Zintl anions: synthesis and crystal structures of [K([2.2.2]-crypt)]2 Ge5·4NH3 and [Rb([2.2.2]-crypt)]2Ge5·4NH3. New J. Chem. 2006, 30, 1737–1739. [Google Scholar] [CrossRef]
- Friedrich, U.; Korber, N. Cs5Sn9(OH)·4NH3. Acta Crystallogr. E 2014, 70, i29. [Google Scholar] [CrossRef] [PubMed]
- Kottke, T.; Stalke, D. Crystal handling at low temperatures. J. Appl. Crystallogr. 1993, 26, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Stalke, D. Cryo crystal structure determination and application to intermediates. Chem. Soc. Rev. 1998, 27, 171–178. [Google Scholar] [CrossRef]
- Rigaku. Crysalis pro, Version 1.171.38.46; Agilent Technologies: Santa Clara, CA, USA, 2017. [Google Scholar]
- X-RED. STOE & Cie GmbH Darmstadt 1998; X-RED Data Reduction for STADI4 and IPDS: Darmstadt, Germany, 1998. [Google Scholar]
- Fendt, F.; Koch, C.; Gartner, S.; Korber, N. Reaction of Sn44− in liquid ammonia: the formation of Rb6[(η2-Sn4) Zn (η3-Sn4)]·5NH3. Dalton Trans. 2013, 42, 15548–15550. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Hackspill, L. Some properties of the alkali metals. Helv. Chim. Acta 1928, 11, 1. [Google Scholar]
- Suchentrunk, C.; Rossmier, T.; Korber, N. Crystal structures of the [18]-crown-6 ammoniate C12H24O6·2NH3 and the cryptand [2.2.2] ammoniate C18H36O6N2·2NH3. Z. Kristallogr. 2006, 221, 162–165. [Google Scholar]
Si | Ge | Sn | Pb | |
---|---|---|---|---|
Li | I41/a LiSi [23] | I41/a LiSi [24] | I41/amd [26] | CsCl (?) [28] |
Na | C2/c [14,16,17,22] | P21/c [14,16] | I41/acd NaPb [19,27] | I41/acd NaPb [10] |
K | P-43n KGe [11,12,14] | P-43n KGe [11,13] | I41/acd NaPb [19,21] | I41/acd NaPb [21] |
Rb | P-43n KGe [11,12,14] | P-43n KGe [11,13,14] | I41/acd NaPb [18,21] | I41/acd NaPb [20,21] |
Cs | P-43n KGe [11,12,14] | P-43n KGe [11,13,14] | I41/acd NaPb [18,21] | I41/acd NaPb [24] |
Compound | Crystal System | Space Group | Unit Cell Dimensions | |
---|---|---|---|---|
Si | Cs4Si4·7NH3 | triclinic | P-1 | a = 12.3117(6) Å; b = 13.0731(7) Å; c = 13.5149(7) Å; V = 2035.88(19) Å3 |
Ge | Cs4Ge4·9NH3 | orthorhombic | Ibam | a = 11.295(2) Å; b = 11.6429(15) Å; c = 17.237(2) Å; V = 2266.9(6) Å3 |
Sn | [Li(NH3)4]4Sn4·4NH3 | monoclinic | I2/a | a = 16.272(3) Å; b = 10.590(2) Å; c = 20.699(4) Å; V = 3446.9(13) Å3 |
[Li(NH3)4]9Li3(Sn4)3·11NH3 [31] | monoclinic | P2/n | a = 12.4308(7) Å; b = 9.3539(4) Å; c = 37.502(2) Å; V = 4360.4(4) Å3 | |
Na4Sn4·11.5NH3 | monoclinic | P21/c | a = 13.100(3) Å; b = 31.393(6) Å; c = 12.367(3) Å; V = 5085.8(18) Å3 | |
Na4Sn4·13NH3 [31,32] | hexagonal | P63/m | a = b = 10.5623(4) Å; c = 29.6365(16) Å; V = 2863.35 Å3 | |
K4Sn4·8NH3 [31] | hexagonal | P63 | a = b = 13.1209(4) Å; c = 39.285(2) Å; V = 5857.1(4) Å3 | |
Rb4Sn4·2NH3 [30] | monoclinic | P21/a | a = 13.097(4) Å; b = 9.335(2) Å; c = 13.237(4) Å; V = 1542.3(7) Å3 | |
Cs4Sn4·2NH3 [30] | monoclinic | P21/a | a = 13.669(2) Å; b = 9.627(1) Å; c = 13.852(2) Å; V = 1737.6(4) Å3 | |
Pb | Rb4Pb4·2NH3 [30] | monoclinic | P21/a | a = 13.170(3) Å; b = 9.490(2) Å; c = 13.410(3) Å; V = 1595.2(6) Å3 |
Cs4Pb4·5NH3 | orthorhombic | Pbcm | a = 9.4149(3) Å; b = 27.1896(7) Å; c = 8.1435(2) Å; V = 2084.63(10) Å3 |
Chemical Formula | Cs4Pb4·5NH3 | Cs4Ge4·9NH3 | Cs4Si4·7NH3 | Na4Sn4·11.5NH3 | [Li(NH3)4]4Sn4·4NH3 | K4.5Sn4(OH)0.5·1.75NH3 |
---|---|---|---|---|---|---|
CSD No. * | 434173 | 434172 | 434176 | 421860 | 421857 | 427472 |
Mr [g·mol−1] | 1445.57 | 948.09 | 763.24 | 1525.25 | 843.20 | 689.03 |
Crystal system | orthorhombic | orthorhombic | triclinic | monoclinic | monoclinic | monoclinic |
Space group | Pbcm | Ibam | P-1 | P21/c | I2/a | P21/c |
a [Å] | 9.4149(3) | 11.295(2) | 12.3117(6) | 13.100(3) | 16.272(3) | 16.775(3) |
b [Å] | 27.1896(7) | 11.6429(15) | 13.0731(7) | 31.393(6) | 10.590(2) | 13.712(3) |
c [Å] | 8.1435(2) | 17.237(2) | 13.5149(7) | 12.367(3) | 20.699(4) | 26.038(5) |
α [°] | 90 | 90 | 85.067(4) | 90 | 90 | 90 |
β [°] | 90 | 90 | 73.052(4) | 90.32(3) | 104.90(3) | 90.92(3) |
γ [°] | 90 | 90 | 78.183(4) | 90 | 90 | 90 |
V [Å3] | 2084.63(10) | 2266.9(6) | 2035.88(19) | 5085.8(18) | 3446.9(13) | 5988(2) |
Z | 4 | 4 | 4 | 4 | 4 | 16 |
F(000) (e) | 2392.0 | 1644.0 | 1384.0 | 2800.0 | 1648.0 | 4920.0 |
ρcalc [g·cm−3] | 4.606 | 2.778 | 2.490 | 1.968 | 1.625 | 3.057 |
μ [mm−1] | 39.072 | 11.578 | 7.331 | 3.955 | 2.887 | 7.807 |
Absorption correction | numerical [47] | / | numerical [47] | numerical [48] | numerical [48] | numerical [48] |
Diffractometer (radiation source) | Super Nova (Mo) | Super Nova (Mo) | Super Nova (Mo) | Stoe IPDS II (Mo) | Stoe IPDS II (Mo) | Stoe IPDS II (Mo) |
2θ- range for data collection [°] | 6.24–52.74 | 6.9–48.626 | 6.3–50.146 | 3.892–51.078 | 4.072–50.91 | 3.836–50.966 |
Reflections collected/independent | 18834/2274 | 2294/748 | 26514/7197 | 9587/9390 | 22976/3118 | 27272/10460 |
Data/restraints/parameters | 2274/0/72 | 748/0/44 | 7197/30/377 | 9390/0/370 | 3118/9/163 | 10460/0/389 |
Goodness-of-fit on F2 | 1.086 | 1.043 | 1.038 | 0.802 | 0.886 | 0.844 |
Final R indices [I > 2σ(I)] | R1 = 0.0388, wR2 = 0.0900 | R1 = 0.0711, wR2 = 0.1251 | R1 = 0.0304, wR2 = 0.0747 | R1 = 0.0401, wR2 = 0.1007 | R1 = 0.0400, wR2 = 0.0798 | R1 = 0.0592, wR2 = 0.1397 |
R indices (all data) | R1 = 0.0425, wR2 = 0.0926 | R1 = 0.1323, wR2 = 0.1525 | R1 = 0.0365, wR2 = 0.0780 | R1 = 0.0625, wR2 = 0.1101 | R1 = 0.0748, wR2 = 0.0861 | R1 = 0.1037, wR2 = 0.1538 |
Rint | 0.0884 | 0.1162 | 0.0343 | 0.1011 | 0.0965 | 0.0704 |
Δρmax, Δρmax [e·Å−3] | 2.48/−2.32 | 1.70/−1.24 | 2.00/−2.22 | 1.90/−1.17 | 1.61/−0.62 | 3.86/−1.24 |
Compound | Coordination Number (CN) E−-A+ | η1-like Coordination | η2-like Coordination | η3-like Coordination |
---|---|---|---|---|
NaPb Type | 16 | 8 | 4 | 4 |
Na4Sn4·13NH3 | 4 | / | / | 4 |
Na4Sn4·11.5NH3 | 5 | / | 2 | 3 |
Cs4Pb4·5NH3 | 12 | 6 | 5 | 1 |
Rb4Sn4·2NH3/Cs4Sn4·2NH3/Rb4Pb4·2NH3 | 14 | 7 | 4 | 3 |
Compound | CNtotal of Cations | A+-E− Contacts | A+-NH3 Contacts |
---|---|---|---|
NaPb Type | 6–8 | 6–8 | 0 |
Na4Sn4·13NH3 | 7 | 3 | 4 |
Na4Sn4·11.5NH3 | 5–6 | 2–3 | 0–3 |
Cs4Pb4·5NH3 | 9–10 | 4–5 | 4–6 |
Rb4Sn4·2NH3/Cs4Sn4·2NH3/Rb4Pb4·2NH3 | 8–11 | 5–7 | 2–4 |
Compound | Coordination Number (CN) E−-A+ | η1-like Coordination | η2-like Coordination | η3-like Coordination |
---|---|---|---|---|
KGe Type | 16 | 12 | / | 4 |
Cs4Si4·7NH3 | 9/11 | 3/4 | 2/3 | 4/4 |
Cs4Ge4·9NH3 | 8 | 4 | / | 4 |
[Li(NH3)4]4Sn4·4NH3 | 8 | 4 | / | 4 |
Compound | CNtotal of Cations | A+-E− Contacts | A+-NH3 Contacts |
---|---|---|---|
KGe Type | 6 | 6 | 0 |
Cs4Si4·7NH3 | 10–13 | 2–7 | 4–9 |
Cs4Ge4·9NH3 | 13 | 4 | 9 |
[Li(NH3)4]4Sn4·4NH3 | 7 | 3 | 4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenz, C.; Gärtner, S.; Korber, N. Ammoniates of Zintl Phases: Similarities and Differences of Binary Phases A4E4 and Their Corresponding Solvates. Crystals 2018, 8, 276. https://doi.org/10.3390/cryst8070276
Lorenz C, Gärtner S, Korber N. Ammoniates of Zintl Phases: Similarities and Differences of Binary Phases A4E4 and Their Corresponding Solvates. Crystals. 2018; 8(7):276. https://doi.org/10.3390/cryst8070276
Chicago/Turabian StyleLorenz, Corinna, Stefanie Gärtner, and Nikolaus Korber. 2018. "Ammoniates of Zintl Phases: Similarities and Differences of Binary Phases A4E4 and Their Corresponding Solvates" Crystals 8, no. 7: 276. https://doi.org/10.3390/cryst8070276
APA StyleLorenz, C., Gärtner, S., & Korber, N. (2018). Ammoniates of Zintl Phases: Similarities and Differences of Binary Phases A4E4 and Their Corresponding Solvates. Crystals, 8(7), 276. https://doi.org/10.3390/cryst8070276