Quantitative Effect of Zr Content on the Structure and Water–Gas Shift Reaction Activities of Gold Supported on Ceria–Zirconia
Abstract
1. Introduction
2. Experimental
2.1. Catalyst Preparation
2.2. Catalytic Test
2.3. Characterizations
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Flytzani-Stephanopoulos, M. Gold atoms stabilized on various supports catalyze the water–gas shift reaction. Acc. Chem. Res. 2013, 47, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Hakeem, A.A.; Vásquez, R.S.; Rajendran, J.; Li, M.; Berger, R.J.; Delgado, J.J.; Kapteijn, F.; Makkee, M. The role of rhodium in the mechanism of the water–gas shift over zirconia supported iron oxide. J. Catal. 2014, 313, 34–45. [Google Scholar] [CrossRef]
- Saw, E.T.; Oemar, U.; Ang, M.L.; Kus, H.; Kawi, S. High-temperature water gas shift reaction on Ni-Cu/CeO2 catalysts: Effect of ceria nanocrystal size on carboxylate formation. Catal. Sci. Technol. 2016, 6, 5336–5349. [Google Scholar] [CrossRef]
- Yang, M.; Allard, L.F.; Flytzani-Stephanopoulos, M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water–gas shift reaction. J. Am. Chem. Soc. 2013, 135, 3768–3771. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yin, H.; Dai, S. Performance of Au/MxOy/TiO2 catalysts in water–gas shift reaction. Catal. Lett. 2010, 136, 83–91. [Google Scholar] [CrossRef]
- Shekhar, M.; Wang, J.; Lee, W.-S.; Williams, W.D.; Kim, S.M.; Stach, E.A.; Miller, J.T.; Delgass, W.N.; Ribeiro, F.H. Size and support effects for the water–gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 2012, 134, 4700–4708. [Google Scholar] [CrossRef] [PubMed]
- Pérez, P.; Soria, M.A.; Carabineiro, S.A.; Maldonado-Hódar, F.J.; Mendes, A.; Madeira, L.M. Application of Au/TiO2 catalysts in the low-temperature water–gas shift reaction. Int. J. Hydrogen Energy 2016, 41, 4670–4681. [Google Scholar] [CrossRef]
- Song, L.; Lu, Z.; Zhang, Y.; Su, Q.; Li, L. Hydrogen-etched TiO2−x as efficient support of gold catalysts for water–gas shift reaction. Catalysts 2018, 8, 26. [Google Scholar] [CrossRef]
- Li, L.; Zhan, Y.; Zheng, Q.; Zheng, Y.; Chen, C.; She, Y.; Lin, X.; Wei, K. Water–gas shift reaction over CuO/CeO2 catalysts: Effect of the thermal stability and oxygen vacancies of CeO2 supports previously prepared by different methods. Catal. Lett. 2009, 130, 532–540. [Google Scholar] [CrossRef]
- González-Castaño, M.; Ivanova, S.; Ioannides, T.; Centeno, M.; Odriozola, J. Deep insight into Zr/Fe combination for successful Pt/CeO2/Al2O3 WGS catalyst doping. Catal. Sci. Technol. 2017, 7, 1556–1564. [Google Scholar] [CrossRef]
- Ren, Z.; Peng, F.; Li, J.; Liang, X.; Chen, B. Morphology-dependent properties of Cu/CeO2 catalysts for the water–gas shift reaction. Catalysts 2017, 7, 48–59. [Google Scholar] [CrossRef]
- He, Y.; Du, S.; Li, J.; Zhang, R.; Liang, X.; Chen, B. Mesoporous ceria-supported gold catalysts self-assembled from monodispersed ceria nanoparticles and nanocubes: A study of the crystal plane effect for the low-temperature water gas shift reaction. ChemCatChem 2017, 9, 4070–4082. [Google Scholar] [CrossRef]
- Tibiletti, D.; Meunier, F.; Goguet, A.; Reid, D.; Burch, R.; Boaro, M.; Vicario, M.; Trovarelli, A. An investigation of possible mechanisms for the water–gas shift reaction over a ZrO2-supported Pt catalyst. J. Catal. 2006, 244, 183–191. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Song, W.; Liu, J.; Shen, W. Influence of zirconia crystal phase on the catalytic performance of Au/ZrO2 catalysts for low-temperature water gas shift reaction. Appl. Catal. A-Gen. 2008, 334, 321–329. [Google Scholar] [CrossRef]
- Menegazzo, F.; Pinna, F.; Signoretto, M.; Trevisan, V.; Boccuzzi, F.; Chiorino, A.; Manzoli, M. Highly dispersed gold on zirconia: Characterization and activity in low-temperature water gas shift tests. ChemSusChem 2008, 1, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Zane, F.; Trevisan, V.; Pinna, F.; Signoretto, M.; Menegazzo, F. Investigation on gold dispersion of Au/ZrO2 catalysts and activity in the low-temperature WGS reaction. Appl. Catal. B-Environ. 2009, 89, 303–308. [Google Scholar] [CrossRef]
- Xie, H.; Lu, J.; Shekhar, M.; Elam, J.W.; Delgass, W.N.; Ribeiro, F.H.; Weitz, E.; Poeppelmeier, K.R. Synthesis of Na-stabilized nonporous t-ZrO2 supports and Pt/t-ZrO2 catalysts and application to water–gas-shift reaction. ACS Catal. 2013, 3, 61–73. [Google Scholar] [CrossRef]
- Posada-Pérez, S.; Gutiérrez, R.A.; Zuo, Z.; Ramírez, P.J.; Viñes, F.; Liu, P.; Illas, F.; Rodriguez, J.A. Highly active Au/δ-MoC and Au/β-Mo2C catalysts for the low-temperature water gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance. Catal. Sci. Technol. 2017, 7, 5332–5342. [Google Scholar] [CrossRef]
- Lin, J.; Wang, A.; Qiao, B.; Liu, X.; Yang, X.; Wang, X.; Liang, J.; Li, J.; Liu, J.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317. [Google Scholar] [CrossRef] [PubMed]
- Dufour, J.; Martos, C.; Ruiz, A.; Ayuela, F. Effect of the precursor on the activity of high temperature water gas shift catalysts. Int. J. Hydrogen Energy 2013, 38, 7647–7653. [Google Scholar] [CrossRef]
- Shi, J.; Mahr, C.; Murshed, M.M.; Zielasek, V.; Rosenauer, A.; Gesing, T.M.; Bäumer, M.; Wittstock, A. A versatile sol-gel coating for mixed oxides on nanoporous gold and their application in the water gas shift reaction. Catal. Sci. Technol. 2016, 6, 5311–5319. [Google Scholar] [CrossRef]
- Silva, L.P.; Terra, L.E.; Coutinho, A.C.; Passos, F.B. Sour water–gas shift reaction over Pt/CeZrO2 catalysts. J. Catal. 2016, 341, 1–12. [Google Scholar] [CrossRef]
- Daly, H.; Goguet, A.; Hardacre, C.; Meunier, F.; Pilasombat, R.; Thompsett, D. The effect of reaction conditions on the stability of Au/CeZrO4 catalysts in the low-temperature water–gas shift reaction. J. Catal. 2010, 273, 257–265. [Google Scholar] [CrossRef]
- Carter, J.H.; Liu, X.; He, Q.; Althahban, S.; Nowicka, E.; Freakley, S.J.; Niu, L.; Morgan, D.J.; Li, Y.; Niemantsverdriet, J. Activation and deactivation of Gold/Ceria-Zirconia in the low-temperature water–gas shift reaction. Angew. Chem. Int. Ed. 2017, 56, 16037–16041. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.O.; Hong, Y.J.; Na, H.S.; Jang, W.J.; Kang, Y.C.; Roh, H.S. Highly active and stable Pt-loaded Ce0.75Zr0.25O2 yolk-shell catalyst for water–gas shift reaction. ACS Appl. Mater. Interfaces 2016, 8, 17239–17244. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.-W.; Na, H.-S.; Shim, J.-O.; Jang, W.-J.; Roh, H.-S. A crucial role for the CeO2-ZrO2 support for the low temperature water gas shift reaction over Cu-CeO2-ZrO2 catalysts. Catal. Sci. Technol. 2015, 5, 3706–3713. [Google Scholar] [CrossRef]
- Liang, S.; Veser, G. Mixed lanthana/ceria nanorod-supported gold catalysts for water–gas-shift. Catal. Lett. 2012, 142, 936–945. [Google Scholar] [CrossRef]
- Gamboa-Rosales, N.K.; Ayastuy, J.L.; Gutiérrez-Ortiz, M.A. Effect of Au in Au-Co3O4/CeO2 catalyst during oxygen-enhanced water gas shift. Int. J. Hydrogen Energy 2016, 41, 19408–19417. [Google Scholar] [CrossRef]
- Dobrosz-Gómez, I.; Kocemba, I.; Rynkowski, J.M. Au/Ce1-xZrxO2 as effective catalysts for low-temperature CO oxidation. Appl. Catal. B-Environ. 2008, 83, 240–255. [Google Scholar] [CrossRef]
- Pojanavaraphan, C.; Luengnaruemitchai, A.; Gulari, E. Effect of catalyst preparation on Au/Ce1−xZrxO2 and Au-Cu/Ce1−xZrxO2 for steam reforming of methanol. Int. J. Hydrogen Energy 2013, 38, 1348–1362. [Google Scholar] [CrossRef]
- Kim, D.J. Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M. = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions. J. Am. Ceram. Soc. 1989, 72, 1415–1421. [Google Scholar] [CrossRef]
- Li, L.; Song, L.; Zhu, L.; Yan, Z.; Cao, X. Black TiO2-x with stable surface oxygen vacancies as the support of efficient gold catalysts for water–gas shift reaction. Catal. Sci. Technol. 2018, 8, 1277–1287. [Google Scholar] [CrossRef]
- Li, L.; Song, L.; Chen, C.; Zhang, Y.; Zhan, Y.; Lin, X.; Zheng, Q.; Wang, H.; Ma, H.; Ding, L. Modified precipitation processes and optimized copper content of CuO-CeO2 catalysts for water–gas shift reaction. Int. J. Hydrogen Energy 2014, 39, 19570–19582. [Google Scholar] [CrossRef]
Catalysts | Au Content (%) | a of CeO2 (Å) | d-Spacing of CeO2 (111) (nm) | Crystal Size of CeO2 (nm) |
---|---|---|---|---|
Au-Ce | 3.34 | 5.413 | 0.3125 | 17.2 |
Au-CeZr-3 | 3.32 | 5.406 | 0.3121 | 11.3 |
Au-CeZr-5 | 3.25 | 5.404 | 0.3120 | 10.3 |
Au-CeZr-15 | 3.26 | 5.396 | 0.3115 | 8.8 |
Au-CeZr-45 | 3.35 | 5.380 | 0.3106 | 5.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Zhu, L.; Li, L. Quantitative Effect of Zr Content on the Structure and Water–Gas Shift Reaction Activities of Gold Supported on Ceria–Zirconia. Crystals 2018, 8, 261. https://doi.org/10.3390/cryst8070261
Song L, Zhu L, Li L. Quantitative Effect of Zr Content on the Structure and Water–Gas Shift Reaction Activities of Gold Supported on Ceria–Zirconia. Crystals. 2018; 8(7):261. https://doi.org/10.3390/cryst8070261
Chicago/Turabian StyleSong, Li, Longfeng Zhu, and Lei Li. 2018. "Quantitative Effect of Zr Content on the Structure and Water–Gas Shift Reaction Activities of Gold Supported on Ceria–Zirconia" Crystals 8, no. 7: 261. https://doi.org/10.3390/cryst8070261
APA StyleSong, L., Zhu, L., & Li, L. (2018). Quantitative Effect of Zr Content on the Structure and Water–Gas Shift Reaction Activities of Gold Supported on Ceria–Zirconia. Crystals, 8(7), 261. https://doi.org/10.3390/cryst8070261