Mechanical Behavior of Ion-Exchanged Alkali Aluminosilicate Glass Ceramics
Abstract
1. Introduction
2. Experimental Methods
2.1. Glass and Glass Ceramic Preparation
2.2. Ion Exchange Process
2.3. Sample Characterization
3. Results
3.1. AAS Glass Ceramic
3.2. Ion-Exchanged AAS Glass Ceramic
4. Discussion
4.1. AAS Glass Ceramic Samples
4.2. Ion-Exchanged AAS Glass Ceramic Samples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stookey, S.D. Method of Making Ceramics and Products Thereof. U.S. Patent 2,920,971, 12 January 1960. [Google Scholar]
- Stookey, S.D. Catalyzed crystallization of glass in theory and practice. Ind. Eng. Chem. 1959, 51, 805–808. [Google Scholar] [CrossRef]
- Deubener, J.; Allix, M.; Davis, M.J.; Duran, A.; Höche, T.; Honma, T.; Komatsu, T.; Krüger, S.; Mitra, I.; Müller, R.; et al. Updated definition of glass-ceramics. J. Non-Cryst. Sol. 2018, 501, 3–10. [Google Scholar] [CrossRef]
- Beall, G.H. Milestones in Glass-Ceramics: A Personal Perspective. Int. J. Appl. Glass Sci. 2014, 5, 93–103. [Google Scholar] [CrossRef]
- Allix, M.; Cormier, L. Crystallizatization and Glass-ceramics. In Springer Handbook of Glass. Chapter 4. Springer Handbooks; Musgraves, J.D., Hu, J., Calvez, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Venkateswaran, C.; Sreemoolanadhan, H.; Vaish, R. Lithium aluminosilicate (LAS) glass-ceramics: A review of recent progress. Int. Mater. Rev. 2022, 67, 620–657. [Google Scholar] [CrossRef]
- ANaumov, S.; Sigaev, V.N. Transparent Lithium-Aluminum-Silicate Glass-Ceramics (Overview). Glass Ceram. 2024, 80, 491–499. [Google Scholar] [CrossRef]
- Holand, W.; Beall, G.H. Glass-Ceramic Technology; The American Ceramic Society: Westerville, OH, USA, 2002. [Google Scholar]
- Beall, G.H.; Duke, D.A. Transparent glass-ceramics. J. Mater. Sci. 1969, 4, 340–352. [Google Scholar] [CrossRef]
- Shelby, J.E. Introduction to Glass Science and Technology, 2nd ed.; The Royal Society of Chemistry: Cambridge, UK, 2005. [Google Scholar]
- Gy, R. Ion exchange for glass strengthening. Mater. Sci. Eng. B 2008, 149, 159–165. [Google Scholar] [CrossRef]
- Varshneya, A.K. Chemical strengthening of glass: Lessons learned and yet to be learned. Int. J. Appl. Glass Sci. 2010, 1, 131–142. [Google Scholar] [CrossRef]
- Karlsson, S.; Jonson, B.; Stålhandske, C. The technology of chemical glass strengthening—A review. Glass Technol. Eur. J. Glass Sci. Technol. 2010, 51, 41–54. [Google Scholar]
- Varshneya, A.K.; Kreski, P.K. The chemistry of chemical strengthening of glass. Ceram. Trans. 2012, 231, 107–114. [Google Scholar]
- Mazzoldi, P.; Carturan, S.; Quaranta, A.; Sada, C.; Sglavo, V.M. Ion exchange process: History, evolution and applications. Riv. Nuovo C. 2013, 36, 397–460. [Google Scholar]
- Gross, T.M. Chemical strengthening of glass. In Springer Handbook of Glass. Chapter 8. Springer Handbooks; Musgraves, J.D., Hu, J., Calvez, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Dejneka, M.; Dutta, I.; Smith, C. Chemically Strengthened Low Crystallinity Black Glass-Ceramics with High Liquidus Viscosities. Int. J. Appl. Glass Sci. 2014, 5, 146–160. [Google Scholar] [CrossRef]
- Beall, G.H.; Comte, M.; Dejneka, M.J.; Marques, P.; Pradeau, P.; Smith, C. Ion exchange in Glass-Ceramics. Front. Mater. 2016, 3, 41. [Google Scholar] [CrossRef]
- Nunes, B.; Pinho, I.; Cruz Fernandes, J.; Almeida, R.M.; Santos, L.F. Mechanical properties of ion-exchanged alkali aluminosilicate glass. Int. J. Appl. Glass Sci. 2022, 14, 155–164. [Google Scholar] [CrossRef]
- Pinho, I. Otimização das Propriedades Mecânicas de Vidros Aluminosilicatos Alcalinos Através de Tratamentos Químicos. Master’s Thesis, Instituto Superior Técnico, University of Lisboa, Lisboa, Portugal, 2021. [Google Scholar]
- Fu, A.I.; Mauro, J.C. Mutual diffusivity, network dilation, and salt bath poisoning effects in ion-exchanged glass. J. Non-Cryst. Solids 2013, 363, 199–204. [Google Scholar] [CrossRef]
- JIS R1607; Testing Methods for Fracture Toughness of High Performance Ceramics. Japanese Standards Association: Tokyo, Japan, 1990.
- Weibull, W. Statistical theory of the strength of materials. Ing. Vetenskaps. Akad. Handlingar. 1939, 151, 1–45. [Google Scholar]
- C1239-06; Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics. ASTM: West Conshohocken, PA, USA, 2006.
- C1499-19; Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature. ASTM: West Conshohocken, PA, USA, 2019.
- C1322-05b; Standard Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics. ASTM: West Conshohocken, PA, USA, 2005.
- Cullity, B.D. Elements of X-Ray Diffraction, 3rd ed.; Addison-Wesley Publishing Company Inc: Boston, MA, USA, 1967. [Google Scholar]
- Dessemond, C.; Lajoie-Leroux, F.; Soucy, G.; Laroche, N.; Magnan, J.-F. Spodumene: The Lithium Market, Resources and Processes. Minerals 2019, 9, 334. [Google Scholar] [CrossRef]
- Tagantsev, D. Decrystallization of glass-ceramics under ion exchange diffusion. J. Eur. Ceram. Soc. 1999, 19, 1555–1558. [Google Scholar] [CrossRef]
- Zheng, W.; Gao, Z.; Huang, M.; Zhang, H.; Yuan, J.; Tian, P.; Peng, Z.; Du, X. Chemical strengthening of lithium aluminosilicate glass-ceramic with different crystallinity. J. Non-Cryst. Solids 2022, 598, 121940. [Google Scholar] [CrossRef]
- Erdem, I.; Guldiren, D.; Aydin, S. Chemical tempering of soda lime silicate glasses by ion exchange process for the improvement of surface and bulk mechanical strength. J. Non-Cryst. Solids 2017, 473, 170–178. [Google Scholar] [CrossRef]
Surface Finishing | Ra [nm] | Rz [nm] |
---|---|---|
Polished to 5 µm | 3.05 ± 0.65 | 85.53 ± 8.61 |
Polished to 0.5 µm | 0.59 ± 0.21 | 12.25 ± 9.57 |
Heat-Treated Samples | Hardness (HV0.2) |
---|---|
AAS glass [19] | 620 ± 10 |
570 °C; 1 h | 673 ± 10 |
575 °C; 1 h | 710 ± 14 |
580 °C; 1 h | 754 ± 14 |
590 °C; 1 h | 768 ± 17 |
700 °C; 1 h | 806 ± 45 |
ρ [g/cm3] (±0.01) | T [%] (500–550 nm) | HV0.2 | E [GPa] | G [GPa] | ν (±0.01) | KC [MPa.m1/2] | σf [MPa] | Weibull Modulus |
---|---|---|---|---|---|---|---|---|
2.46 | 90 | 679 ± 14 | 85 ± 1 | 34 ± 1 | 0.24 | 1.6 ± 0.1 | 201 ± 92 | 2.89/2.32 |
Ion Exchange Conditions | Hardness (HV0.2) | |
---|---|---|
420 °C | 9 h | 720 ± 14 |
12 h | 763 ± 21 | |
30 h | 745 ± 20 | |
450 °C | 9 h | 755 ± 20 |
12 h | 773 ± 23 | |
30 h | 763 ± 23 |
Ion Exchange Conditions | Load [N]; Time [s] | KC [MPa·m1/2] | c/a |
---|---|---|---|
420 °C, 9 h | 98; 20 | 3.18 | 1.86 |
420 °C, 12 h | 98; 20 | 3.08 | 1.80 |
420 °C, 30 h | 98; 20 | 2.60 | 2.12 |
450 °C, 9 h | 98; 20 | 3.40 | 1.64 |
450 °C, 12 h | 196; 15 | 1.97 | 3.08 |
450 °C, 30 h | Highly deformed indentations under any load and time |
ρ [g/cm3] (±0.01) | T [%] (500–550 nm) | HV0.2 | E [GPa] | G [GPa] | ν (±0.01) | KC [MPa.m1/2] | σf [MPa] | Weibull Modulus |
---|---|---|---|---|---|---|---|---|
2.46 | 88 | 773 ± 23 | 86 ± 1 | 35 ± 1 | 0.23 | 2.0 ± 0.2 | 362 ± 84 | 4.85/5.06 * |
AAS Glass [19] | IE–AAS Glass (450 °C—12 h) [19] | AAS GC (575 °C—1 h) | IE–AAS–GC (450 °C—12 h) | |
---|---|---|---|---|
ρ [g/cm3] (±0.01) | 2.49 | 2.49 | 2.46 | 2.46 |
T [%] (500–550 nm) | 91 | 91 | 90 | 88 |
HV0.2 | 620 ± 10 | 716 ± 13 | 710 ± 14 | 773 ± 23 |
E [GPa] | 87 ± 1 | 87 ± 1 | 85 ± 1 | 86 ± 1 |
G [GPa] | 35 ± 1 | 35 ± 1 | 34 ± 1 | 35 ± 1 |
ν (±0.01) | 0.23 | 0.23 | 0.24 | 0.23 |
KC [MPa.m1/2] | 1.7 ± 0.1 | 2.2 ± 0.1 | 1.6 ± 0.1 | 2.0 ± 0.2 ** |
σf [MPa] | 310 ± 84 | 468 ± 169 | 201 ± 92 | 362 ± 84 |
Weibull modulus | 4.27/4.02 * | 2.47/3.20 * | 2.89/2.32 * | 4.85/5.06 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, B.M.F.; Dinis, A.; Fernandes, J.C.; Almeida, R.M.; Santos, L.F. Mechanical Behavior of Ion-Exchanged Alkali Aluminosilicate Glass Ceramics. Crystals 2025, 15, 16. https://doi.org/10.3390/cryst15010016
Nunes BMF, Dinis A, Fernandes JC, Almeida RM, Santos LF. Mechanical Behavior of Ion-Exchanged Alkali Aluminosilicate Glass Ceramics. Crystals. 2025; 15(1):16. https://doi.org/10.3390/cryst15010016
Chicago/Turabian StyleNunes, Bruno M. F., André Dinis, Jorge C. Fernandes, Rui M. Almeida, and Luís F. Santos. 2025. "Mechanical Behavior of Ion-Exchanged Alkali Aluminosilicate Glass Ceramics" Crystals 15, no. 1: 16. https://doi.org/10.3390/cryst15010016
APA StyleNunes, B. M. F., Dinis, A., Fernandes, J. C., Almeida, R. M., & Santos, L. F. (2025). Mechanical Behavior of Ion-Exchanged Alkali Aluminosilicate Glass Ceramics. Crystals, 15(1), 16. https://doi.org/10.3390/cryst15010016