Solvation, Hydration, and Counterion Effect on the Formation of Ag(I) Complexes with the Dipodal Ligand 2,6-Bis[(imidazol-2-yl)thiomethyl]naphthalene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Measurements
2.3. Synthesis of Ag(I) Complexes
2.4. Structure Determination
2.5. Computational Study
3. Results and Discussion
3.1. Crystal Structure of L
3.2. Crystal Structures of {[AgL](PF6)}n·nMeOH (1), {[AgL](PF6)}n·n(0.5H2O) (2), and {[AgL](SbF6)}n·nMeOH (3)
3.3. Crystal Structure of {[AgL](CF3SO3)}n (4)
3.4. Ligand Flexibility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nangia, A.K.; Desiraju, G.R. Crystal Engineering: An Outlook for the Future. Angew. Chem.-Int. Ed. 2019, 58, 4100–4107. [Google Scholar] [CrossRef]
- Desiraju, G.R. Crystal Engineering: From Molecule to Crystal. J. Am. Chem. Soc. 2013, 135, 9952–9967. [Google Scholar] [CrossRef]
- Biradha, K.; Su, C.Y.; Vittal, J.J. Recent Developments in Crystal Engineering. Cryst. Growth Des. 2011, 11, 875–886. [Google Scholar] [CrossRef]
- Brammer, L. Developments in Inorganic Crystal Engineering. Chem. Soc. Rev. 2004, 33, 476–489. [Google Scholar] [CrossRef]
- Bowskill, D.H.; Sugden, I.J.; Konstantinopoulos, S.; Adjiman, C.S.; Pantelides, C.C. Crystal Structure Prediction Methods for Organic Molecules: State of the Art. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 593–623. [Google Scholar] [CrossRef]
- Kendrick, J.; Leusen, F.J.J.; Neumann, M.A.; Van De Streek, J. Progress in Crystal Structure Prediction. Chem.-A Eur. J. 2011, 17, 10736–10744. [Google Scholar] [CrossRef] [PubMed]
- Oganov, A.R. Crystal Structure Prediction: Reflections on Present Status and Challenges. Faraday Discuss. 2018, 211, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Cabeza, A.J.; Feeder, N.; Davey, R.J. Open Questions in Organic Crystal Polymorphism. Commun. Chem. 2020, 3, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Greenwell, C.; McKinley, J.L.; Zhang, P.; Zeng, Q.; Sun, G.; Li, B.; Wen, S.; Beran, G.J.O. Overcoming the Difficulties of Predicting Conformational Polymorph Energetics in Molecular Crystals: Via Correlated Wavefunction Methods. Chem. Sci. 2020, 11, 2200–2214. [Google Scholar] [CrossRef] [PubMed]
- Nyman, J.; Yu, L.; Reutzel-Edens, S.M. Accuracy and Reproducibility in Crystal Structure Prediction: The Curious Case of ROY. CrystEngComm 2019, 21, 2080–2088. [Google Scholar] [CrossRef]
- Duggirala, N.K.; Perry, M.L.; Almarsson, Ö.; Zaworotko, M.J. Pharmaceutical Cocrystals: Along the Path to Improved Medicines. Chem. Commun. 2016, 52, 640–655. [Google Scholar] [CrossRef]
- Loschen, C.; Klamt, A. Solubility Prediction, Solvate and Cocrystal Screening as Tools for Rational Crystal Engineering. J. Pharm. Pharmacol. 2015, 67, 803–811. [Google Scholar] [CrossRef]
- Bolla, G.; Sarma, B.; Nangia, A.K. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem. Rev. 2022, 122, 11514–11603. [Google Scholar] [CrossRef]
- Le Garff, P.; Losus, R.M.; Chaudhary, S.; Dobrzańska, L. Tailoring the Dimensionality of Metal Complexes via Ligand Modifications. Acta Cryst. 2024, B80, 19–26. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kędziera, D.; Dobrzańska, L. Structural Diversity of Ag(I) Complexes with the Flexible Ligand 1,3-Bis[(Imidazol-2-yl)Thiomethyl]Benzene. Polyhedron 2022, 224, 115989. [Google Scholar] [CrossRef]
- Dobrzańska, L. Counterion Effect and Isostructurality in a Series of Ag(I) Complexes Containing a Flexible, Imidazole Based Dipodal Ligand. Materials 2021, 14, 1804. [Google Scholar] [CrossRef] [PubMed]
- Arhangelskis, M.; Van Meervelt, L.; Dobrzańska, L. Influence of Ligand Composition on Crystal Structure Formation-Isostructurality and Morphotropism. CrystEngComm 2021, 23, 317–323. [Google Scholar] [CrossRef]
- Dobrzańska, L. Structural Heterogeneity of AgI Complexes with a Flexible 1,2-Bis[(Imidazol-2-yl)Thiomethyl]Benzene Ligand and Issues Regarding the Phase Purity of the Bulk Material. Eur. J. Inorg. Chem. 2012, 1, 945–953. [Google Scholar] [CrossRef]
- SAINT. Bruker Analytical X-ray, v8.34A; Instruments Inc.: Madison, WI, USA, 2009.
- SADABS. Bruker Analytical X-ray, v2014/5; Instruments Inc.: Madison, WI, USA, 2009.
- Rigaku Oxford Diffraction. CrysAlisPro Software System, Version 1.171.41.104a; Rigaku Corporation: Oxford, UK, 2021.
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Van De Streek, J.; Wood, P.A. Mercury CSD 2.0—New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Available online: www.povray.org (accessed on 22 February 2024).
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Desiraju, G.R.; Steiner, T. The cut-off for weak interactions was based on. In The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, UK, 2006; p. 13. [Google Scholar]
- Kálmán, A.; Párkányi, L.; Argay, G. Classification of the Isostructurality of Organic Molecules in the Crystalline State. Acta Crystallogr. Sect. B 1993, 49, 1039–1049. [Google Scholar] [CrossRef]
- Kálmán, A.; Párkányi, L. Isostructurality of Organic Crystals in Advances in Molecular Structure Research; Hargittai, M., Hargittai, I., Eds.; Elsevier: San Diego, CA, USA, 1997; Volume 3, pp. 189–226. [Google Scholar]
Compound Reference | L | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Chemical formula | C18H16N4S2 | C19H20AgF6N4OPS2 | C18H17AgF6N4O0.50PS2 | C19H20AgF6N4OS2Sb | C19H16AgF3N4O3S3 |
Moiety formula | C18H16N4S2 | C18H16N4S2, PF6, CH3OH | C18H16N4S2, PF6, 0.5H2O | C18H16N4S2, SbF6, CH3OH | C18H16N4S2, CF3SO3 |
Formula mass | 352.47 | 637.35 | 614.32 | 728.13 | 609.41 |
Crystal system | triclinic | orthorhombic | monoclinic | orthorhombic | monoclinic |
Space group | P | Pnma | P2/c | Pnma | Cc |
a/Å | 7.8283(7) | 12.9946(16) | 7.0262(3) | 13.2518(11) | 10.2357(4) |
b/Å | 9.6245(9) | 25.731(3) | 7.1038(3) | 25.931(2) | 10.5422(5) |
c/Å | 12.5835(9) | 6.8789(8) | 22.0691(10) | 6.9009(6) | 21.5516(8) |
α/° | 83.293(6) | 90 | 90 | 90 | 90 |
β/° | 78.145(7) | 90 | 92.951(4) | 90 | 90.838(2) |
γ/° | 71.301(8) | 90 | 90 | 90 | 90 |
Unit cell volume/Å3 | 877.56(14) | 2300.1(5) | 1100.07(8) | 2371.4(3) | 2325.32(17) |
Temperature/K | 289(3) | 100(2) | 100(2) | 100(2) | 100(2) |
No. of formula units per unit cell, Z | 2 | 4 | 2 | 4 | 4 |
Radiation type | MoKα | MoKα | MoKα | MoKα | CuKα |
Absorption coefficient, μ/mm−1 | 0.310 | 1.197 | 1.246 | 2.209 | 9.965 |
No. of reflections measured | 18417 | 13577 | 5655 | 13539 | 11139 |
No. of independent reflections | 4948 | 2816 | 2990 | 2903 | 4180 |
Rint | 0.0437 | 0.0847 | 0.0413 | 0.0380 | 0.0708 |
Final R1 values (I > 2σ(I)) | 0.0520 | 0.0548 | 0.0564 | 0.0291 | 0.0410 |
Final wR(F2) values (I > 2σ(I)) | 0.0895 | 0.1081 | 0.1172 | 0.0657 | 0.0936 |
Final R1 values (all data) | 0.1006 | 0.0977 | 0.0959 | 0.0342 | 0.0432 |
Final wR(F2) values (all data) | 0.1075 | 0.1240 | 0.1442 | 0.0675 | 0.0948 |
Goodness of fit on F2 | 1.041 | 1.025 | 1.046 | 1.060 | 1.044 |
L | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Torsion angle (°) C2-S6-C7-C8 (and corresponding ones) | 63.3(2) 62.8(2) | 76.0(4) | 57.0(5) | 74.6(2) | 52.1(6)/−53.1(7) |
Distance between centroids of imidazole rings (Å) | 9.91/9.84 | 10.78 | 10.45 | 10.72 | 8.66 |
Dihedral angle between the planes of the imidazole rings (°) | 0 | 0 | 0 | 0 | 10.8(7) |
Dihedral angle between the planes of the imidazole and naphthalene ring | 45.4(1) 44.5(1) | 25.5(2) | 27.2(2) | 25.8(1) | 32.9(4)/22.2(4) |
Dihedral angle C2-S6-C8-C12 (and corresponding ones) | 7.6(2) 6.1(2) | 0.4(4) | 121.5(5) | 2.0(2) | −20.1(6)/17.4(6) |
Complex | Ag1-N1 Bond Length (Å) | N1-Ag1-N1i Angle (°) |
---|---|---|
1 | 2.107(4) | 180 |
2 | 2.099(4) | 180 |
3 | 2.103(2) | 180 |
4 | 2.124(10) | 178.8(4) |
2.107(10) (N1i) |
D-H···A | H···A (Å) | D···A (Å) | D-H···A (°) | D-H···A | H···A (Å) | D···A (Å) | D-H···A (°) | ||
---|---|---|---|---|---|---|---|---|---|
1 | N3-H3···O20 | 1.94 | 2.801(5) | 164 | 3 | N3-H3···O20 | 1.93 | 2.792(3) | 167 |
O20-H20···F15i | 2.11 | 2.897(7) | 161 | O20-H20···F15 | 1.98 | 2.820(4) | 172 | ||
O20-H20···F17ii | 2.81 | 3.195(7) | 111 | O20-H20···F17i | 2.62 | 2.966(4) | 107 | ||
C4-H4∙∙∙F16 | 2.69 | 3.245(5) | 118 | C4-H4∙∙∙F16ii | 2.70 | 3.208(3) | 114 | ||
C7-H7A∙∙∙F14iii | 2.77 | 3.53(6) | 134 | C7-H7A∙∙∙F14iii | 2.68 | 3.467(3) | 137 | ||
C7-H7B∙∙∙F14ii | 2.82 | 3.72(6) | 152 | C7-H7B∙∙∙F14i | 2.89 | 2.743(3) | 145 | ||
C7-H7B∙∙∙F17ii | 2.69 | 3.629(5) | 158 | C7-H7B∙∙∙F17i | 2.70 | 3.619(3) | 154 | ||
C12-H12···F14ii | 2.67 | 3.552(6) | 155 | C12-H12∙∙∙F14i | 2.48 | 3.394(3) | 162 | ||
C19-H19A∙∙∙F16i | 2.95 | 3.668(9) | 131 | C19-H19A∙∙∙F1 | 2.87 | 3.614(6) | 134 | ||
C19-H19B∙∙∙F16 | 2.95 | 3.547(9) | 120 | C19-H19B∙∙∙F16ii | 2.95 | 3.478(5) | 115 | ||
C19-H19B···F17 | 2.66 | 3.500(9) | 144 | C19-H19B···F17ii | 2.62 | 3.490(5) | 148 | ||
C19-H19A∙∙∙F18iv | 2.59 | 3.081(9) | 111 | C19-H19A∙∙∙F18iv | 2.61 | 3.064(5) | 108 * | ||
2 | N3-H3∙∙∙O18 | 2.20 | 2.97(1) | 146 | 4 | N3-H3∙∙∙O30 | 2.08 | 2.83(1) | 142 |
N3-H3∙∙∙F4i | 2.52 | 3.07(2) | 121 | C7-H7B∙∙∙O30 | 2.63 | 3.50(1) | 147 | ||
N3-H3∙∙∙F5 | 2.21 | 3.06(2) | 159 | C23-H23∙∙∙O30i | 2.50 | 3.35(1) | 150 | ||
N3-H3∙∙∙F15i | 2.22 | 2.92(1) | 136 | C18-H18A∙∙∙O31ii | 2.77 | 3.55(1) | 136 | ||
N3-H3∙∙∙F16 | 2.35 | 2.93(2) | 124 | C22-H22∙∙∙O31i | 2.70 | 3.40(1) | 131 | ||
O18-H18A∙∙∙F2 | 2.67 | 3.49(2) | 141 | N24-H24∙∙∙O31iii | 1.99 | 2.80(1) | 153 | ||
O18-H18A∙∙∙F3i | 1.66 | 2.50(3) | 140 | C14-H14∙∙∙O32iv | 2.65 | 3.38(1) | 134 | ||
O18-H18A∙∙∙F14 | 2.03 | 2.89(1) | 145 | C12-H12∙∙∙F26ii | 2.79 | 3.73(1) | 170 | ||
C4-H4∙∙∙F2ii | 2.37 | 3.08(2) | 132 | C9-H9∙∙∙F27i | 2.90 | 3.46(1) | 118 | ||
C4-H4∙∙∙F3iii | 2.63 | 3.37(2) | 135 | C10-H10∙∙∙F27i | 2.80 | 3.40(1) | 122 | ||
C4-H4∙∙∙F14iv | 2.38 | 3.150(1) | 138 | C15-H15∙∙∙F28 | 2.96 | 3.80(1) | 149 | ||
C7-H7B∙∙∙F5iv | 2.60 | 3.58(2) | 172 | C17-H17∙∙∙F28 | 2.72 | 3.63(1) | 159 | ||
C7-H7B∙∙∙F15v | 2.50 | 3.45(1) | 160 | C7-H7A∙∙∙Cg4v | 2.83 | 3.562(9) | 131 | ||
C10-H10∙∙∙F1vi | 2.67 | 3.61(2) | 171 |
L | L-opt | 1 | 1-opt | 2 | 2-opt | 3 | 3-opt | 4 | 4-opt | |
---|---|---|---|---|---|---|---|---|---|---|
Dihedral angle (°) C2-S6-C8-C12 (and corresponding ones) | 6.1(2) | 30.6 | 0.4(4) | 31.1 | 121.5(5) | 123.5 | 2.0(2) | 31.1 | −20.1(6)/ 17.4(6) | −30.6/ 30.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maria Losus, R.; Chaudhary, S.; Dobrzańska, L. Solvation, Hydration, and Counterion Effect on the Formation of Ag(I) Complexes with the Dipodal Ligand 2,6-Bis[(imidazol-2-yl)thiomethyl]naphthalene. Crystals 2024, 14, 248. https://doi.org/10.3390/cryst14030248
Maria Losus R, Chaudhary S, Dobrzańska L. Solvation, Hydration, and Counterion Effect on the Formation of Ag(I) Complexes with the Dipodal Ligand 2,6-Bis[(imidazol-2-yl)thiomethyl]naphthalene. Crystals. 2024; 14(3):248. https://doi.org/10.3390/cryst14030248
Chicago/Turabian StyleMaria Losus, Renny, Simran Chaudhary, and Liliana Dobrzańska. 2024. "Solvation, Hydration, and Counterion Effect on the Formation of Ag(I) Complexes with the Dipodal Ligand 2,6-Bis[(imidazol-2-yl)thiomethyl]naphthalene" Crystals 14, no. 3: 248. https://doi.org/10.3390/cryst14030248
APA StyleMaria Losus, R., Chaudhary, S., & Dobrzańska, L. (2024). Solvation, Hydration, and Counterion Effect on the Formation of Ag(I) Complexes with the Dipodal Ligand 2,6-Bis[(imidazol-2-yl)thiomethyl]naphthalene. Crystals, 14(3), 248. https://doi.org/10.3390/cryst14030248