Crystal Structure, Supramolecular Organization, Hirshfeld Analysis, Interaction Energy, and Spectroscopy of Two Tris(4-aminophenyl)amine-Based Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystallography
2.2. Hirshfeld Surfaces, Interaction Energies, and Energy Framework Diagrams
2.3. Instrumental
2.4. Synthetic Methodology
2.4.1. Triethyl (Nitrilotris(benzene-4,1-diyl))tricarbamate (1)
2.4.2. Triethyl 2,2′,2″-((Nitrilotris(benzene-4,1-diyl))tris(azanediyl))tris(2-oxoacetate) (2)
3. Results and Discussion
3.1. Molecular and Supramolecular Architecture of Compound 1
3.2. Molecular and Supramolecular Architecture of Compound 2
3.3. Quantitative Interaction Energy Analysis
3.4. Hirshfeld Surface (HS) Analysis and Energy Framework Diagraxms
3.5. PXRD, Thermal, and SEM Analyses
3.6. Vibrational Analysis
3.7. NMR in Solution and in the Solid State
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hadek, V.; Ulbert, K. Electric and magnetic properties of organic semiconductors. II. Temperature dependence of the thermo-electromotive force of donor-acceptor complexes of substituted oligomeric leuco bases of polyaniline type with iodine. Collect. Czech. Chem. Commun. 1967, 32, 1118–1124. [Google Scholar] [CrossRef]
- SciFinder. Chemical Abstracts Service: Columbus, OH; Tris(4-aminophenyl)amine. Available online: https://scifinder.cas.org (accessed on 7 August 2024).
- Blanchard, P.; Malacrida, C.; Cabanetos, C.; Roncali, J.; Ludwigs, S. Triphenylamine and some of its derivatives as versatile building blocks for organic electronic applications. Polym. Int. 2019, 68, 589–606. [Google Scholar] [CrossRef]
- Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R.B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 2014, 5, 4503. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Gropp, C.; Yaghi, O.M. Reticulating 1D Ribbons into 2D Covalent Organic Frameworks by Imine and Imide Linkages. J. Ame. Chem. Soc. 2020, 142, 2771–2776. [Google Scholar] [CrossRef]
- Sharma, A.; Babarao, R.; Medhekar, N.; Malani, A. Methane adsorption and separation in slipped and functionalized covalent organic frameworks. Ind. Eng. Chem. Res. 2018, 57, 4767–4778. [Google Scholar] [CrossRef]
- Jiang, L.; Tian, Y.; Sun, T.; Zhu, Y.; Ren, H.; Zou, X.; Ma, Y.; Meihaus, K.R.; Long, J.R.; Zhu, G. A Crystalline Polyimide Porous Organic Framework for Selective Adsorption of Acetylene over Ethylene. J. Am. Chem. Soc. 2018, 140, 15724–15730. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zha, Y.; Jia, H.; Zang, Y.; Liu, Y.; Gu, T.; Du, X. Metal ion-catalyzed interfacial polymerization of functionalized covalent organic framework films for efficient separation. Eur. Polym. J. 2023, 188, 111939. [Google Scholar] [CrossRef]
- Li, B.; Wang, Z.; Gao, Z.; Suo, J.; Xue, M.; Yan, Y.; Valtchev, V.; Qiu, S.; Fang, Q. Self-standing covalent organic framework membranes for dihydrogen/carbon dioxide separation. Adv. Funct. Mat. 2023, 33, 2300219. [Google Scholar] [CrossRef]
- Feldblyum, J.I.; McCreery, C.H.; Andrews, S.C.; Kurosawa, T.; Santos, E.J.G.; Duong, V.; Fang, L.; Ayzner, A.L.; Bao, Z. Few-layer, large-area, 2D covalent organic framework semiconductor thin films. Chem. Comm. 2015, 51, 13894–13897. [Google Scholar] [CrossRef]
- EL-Mahdy, A.F.M.; Kuo, C.-H.; Alshehri, A.; Young, C.; Yamauchi, Y.; Kim, J.; Kuo, S.-W. Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO uptake and energy storage. J. Mater. Chem. A Mater. Energy Sustain. 2018, 6, 19532–19541. [Google Scholar] [CrossRef]
- Lv, J.; Tan, Y.-X.; Xie, J.; Yang, R.; Yu, M.; Sun, S.; Li, M.-D.; Yuan, D.; Wang, Y. Direct Solar-to-Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. Angew. Chem. 2018, 57, 12716–12720. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Li, Z.-J.; Lu, C.; Sun, B.; Zhong, Y.-W.; Wan, L.-J.; Wang, D. Oriented Two-Dimensional Covalent Organic Framework Films for Near-Infrared Electrochromic Application. J. Am. Chem. Soc. 2019, 141, 19831–19838. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Zheng, X.; Li, C.; Yuan, X.; Wang, J.; Xie, Z.; Jing, X. Nanoscale Covalent Organic Frameworks with Donor-Acceptor Structure for Enhanced Photothermal Ablation of Tumors. Nano 2021, 15, 7638–7648. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Ding, X.; Wang, H.; Cao, W.; Jin, Y.; Yu, B.; Jiang, J. Covalent organic frameworks with imine proton acceptors for efficient photocatalytic H production. Chin. Chem. Lett. 2023, 34, 108148. [Google Scholar] [CrossRef]
- Tang, D.; Yin, M.; Du, X.; Duan, Y.; Chen, J.; Qiu, T. Wettability tunable conjugated microporous poly(aniline)s for long-term, rapid and ppb level sequestration of Hg(II). Chem. Eng. J. 2023, 474, 145527. [Google Scholar] [CrossRef]
- Niu, H.; Luo, J.; Wu, W.; Mu, J.; Wang, C.; Bai, X.; Wang, W. Linear and star branched perylene-containing polyimides: Synthesis, characterization, and photovoltaic properties of novel donor-acceptor dyes used in solar cell. J. Appl. Polym. Sci. 2012, 125, 200–211. [Google Scholar] [CrossRef]
- Dnyaneshwar, V.S.; Chandrakant, W.V.; Asokan, K.; Dixit, R.; Goswami, T.; Saha, R.; Gonnade, R.; Ghosh, H.N.; Santhosh, B.S. Oligothiophene-Ring-Strapped Perylene Bisimides: Functionalizable Coaxial Donor-Acceptor Macrocycles. Angew. Chem. 2023, 62, e202212934. [Google Scholar] [CrossRef]
- Song, N.; Ma, T.; Wang, T.; Shi, K.; Tian, Y.; Yao, H.; Zhang, Y.; Guan, S. Crosslinked microporous polyimides with polar substituent group for efficient CO capture. Micropor. Mesopor. Mat. 2020, 293, 109809. [Google Scholar] [CrossRef]
- Zhu, T.; Pei, B.; Di, T.; Xia, Y.; Li, T.; Li, L. Thirty-minute preparation of microporous polyimides with large surface areas for ammonia adsorption. Green Chem. 2020, 22, 7003–7009. [Google Scholar] [CrossRef]
- Rao, K.V.; Haldar, R.; Maji, T.K.; George, S.J. Porous polyimides from polycyclic aromatic linkers: Selective CO capture and hydrogen storage. Polymer 2014, 55, 1452–1458. [Google Scholar] [CrossRef]
- Li, G.; Wang, Z. Naphthalene-Based Microporous Polyimides: Adsorption Behavior of CO and Toxic Organic Vapors and Their Separation from Other Gases. J. Phys. Chem. C 2013, 117, 24428–24437. [Google Scholar] [CrossRef]
- Li, G.; Wang, Z. Microporous Polyimides with Uniform Pores for Adsorption and Separation of CO Gas and Organic Vapors. Macromolecules 2013, 46, 3058–3066. [Google Scholar] [CrossRef]
- Fang, J.; Kita, H.; Okamoto, K.-I. Gas permeation properties of hyperbranched polyimide membranes. J. Membr. Sci. 2001, 182, 245–256. [Google Scholar] [CrossRef]
- Fang, J.; Kita, H.; Okamoto, K.-I. Hyperbranched Polyimides for Gas Separation Applications. 1. Synthesis and Characterization. Macromolecules 2000, 33, 4639–4646. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Cias, P.; Slugovc, C.; Gescheidt, G. Hole Transport in Triphenylamine Based OLED Devices: From Theoretical Modeling to Properties Prediction. J. Phys. Chem. A 2011, 115, 14519–14525. [Google Scholar] [CrossRef]
- Gustafsson, B.; Hakansson, M.; Jagner, S. Complexes between copper(I) chloride and polydentate aromatic amines. Inorg. Chim. Acta 2003, 350, 209–214. [Google Scholar] [CrossRef]
- Akahane, S.; Takeda, T.; Hoshino, N.; Akutagawa, T. Molecular Assemblies of Tetrahedral Triphenylmethanol and Triphenylamine Derivatives Bearing −NHCOCnH2n+1 Chains. Cryst. Growth Des. 2018, 18, 6284–6292. [Google Scholar] [CrossRef]
- Padilla-Martínez, I.I.; Chaparro-Huerta, M.; Martínez-Martínez, F.J.; Höpfl, H.; García-Báez, E.V. Diethyl N,N’-m-phenylenedioxamate. Acta Crystallogr. Sect. E Struct. Rep. Online 2003, 59, o825–o827. [Google Scholar] [CrossRef]
- González-González, J.S.; Martínez-Martínez, F.J.; Peraza-Campos, A.L.; Rosales-Hoz, M.J.; García-Báez, E.V.; Padilla-Martínez, I.I. Supramolecular architectures of conformationally controlled 1,3-phenyl-dioxalamic molecular clefts through hydrogen bonding and steric restraints. CrystEngComm 2011, 13, 4748–4761. [Google Scholar] [CrossRef]
- González-González, J.S.; Martínez-Martínez, F.J.; García-Báez, E.V.; Cruz, A.; Morín-Sánchez, L.M.; Rojas-Lima, S.; Padilla-Martínez, I.I. Molecular Complexes of diethyl N,N-1,3-phenyldioxalamate and resorcinols: Conformational switching through intramolecular three-centered hydrogen-bonding. Cryst. Growth Des. 2014, 14, 628–642. [Google Scholar] [CrossRef]
- González-González, J.S.; Zúñiga-Lemus, O.; Martínez-Martínez, F.J.; González, J.; García-Báez, E.V.; Padilla-Martínez, I.I. Mechanochemical complexation of diethyl N,N′-[1,3-(2-methyl)phenyl]dioxalamate and resorcinol: Conformational twist and X-ray helical supramolecular architecture. J. Chem. Crystallogr. 2015, 45, 244–250. [Google Scholar] [CrossRef]
- Ramírez-Milanés, E.G.; Martínez-Martínez, F.J.; Magaña-Vergara, N.E.; Rojas-Lima, S.; Avendaño-Jiménez, Y.A.; García-Báez, E.V.; Morín-Sánchez, L.M.; Padilla-Martínez, I.I. Positional isomerism and steric effects in the self-assemblies of phenylene bis-monothiooxalamides. Cryst. Growth Des. 2017, 17, 2513–2528. [Google Scholar] [CrossRef]
- Morales-Santana, M.; Chong, S.; Santiago-Quintana, J.M.; Martínez-Martínez, F.; García-Báez, E.; Cruz, A.; Rojas-Lima, S.; Padilla-Martínez, I. Microcrystalline solid–solid transformations of conformationally-responsive solvates, desolvates and a salt of N,N′-(1,4-phenylene)dioxalamic acid: The energetics of hydrogen bonding and n/π → π* interactions. CrystEngComm 2022, 24, 1017–1034. [Google Scholar] [CrossRef]
- Haiduc, I. Inverse coordination metal complexes with oxalate and sulfur, selenium and nitrogen analogues as coordination centers. Topology and systematization. J. Coord. Chem. 2020, 73, 1619–1700. [Google Scholar] [CrossRef]
- Oliveira, W.X.C.; Pinheiro, C.B.; Journaux, Y.; Julve, M.; Pereira, C.L.M. Effects on the magnetic interaction caused by molecular recognition in complexes of 1,2-azole-based oxamate and [Cu(bpca)] units. CrystEngComm 2024, 26, 647–665. [Google Scholar] [CrossRef]
- Li, A.; Chamoreau, L.-M.; Baptiste, B.; Delbes, L.; Li, Y.; Lloret, F.; Journaux, Y.; Lisnard, L. Solvothermal Synthesis, Temperature-Dependent Structural Study, and Magnetic Characterization of a Multipolydentate Oxamate-Based 2D Coordination Network. Cryst. Growth Des. 2022, 22, 7518–7526. [Google Scholar] [CrossRef]
- Journaux, Y.; Ferrando-Soria, J.; Pardo, E.; Ruiz-Garcia, R.; Julve, M.; Lloret, F.; Cano, J.; Li, Y.; Lisnard, L.; Yu, P.; et al. Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story. Eur. J. Inorg. Chem. 2018, 2018, 228–247. [Google Scholar] [CrossRef]
- Ma, L.-N.; Zhang, L.; Zhang, W.-F.; Wang, Z.-H.; Hou, L.; Wang, Y.-Y. Amide-Functionalized In-MOF for Effective Hydrocarbon Separation and CO Catalytic Fixation. Inorg. Chem. 2022, 61, 2679–2685. [Google Scholar] [CrossRef]
- Kalinke, L.H.G.; Cangussu, D.; Mon, M.; Bruno, R.; Tiburcio, E.; Lloret, F.; Armentano, D.; Pardo, E.; Ferrando-Soria, J. Metal-Organic Frameworks as Playgrounds for Reticulate Single-Molecule Magnets. Inorg. Chem. 2019, 58, 14498–14506. [Google Scholar] [CrossRef]
- Grancha, T.; Ferrando-Soria, J.; Proserpio, D.M.; Armentano, D.; Pardo, E. Toward Engineering Chiral Rodlike Metal-Organic Frameworks with Rare Topologies. Inorg. Chem. 2018, 57, 12869–12875. [Google Scholar] [CrossRef] [PubMed]
- Dul, M.-C.; Pardo, E.; Lescouëzec, R.; Journaux, Y.; Ferrando-Soria, J.; Ruiz-García, R.; Cano, J.; Julve, M.; Lloret, F.; Cangussu, D.; et al. Supramolecular coordination chemistry of aromatic polyoxalamide ligands: A metallosupramolecular approach toward functional magnetic materials. Coord. Chem. Rev. 2010, 254, 2281–2296. [Google Scholar] [CrossRef]
- Kalinke, L.H.G.; Rabelo, R.; Valdo, A.K.; Martins, F.T.; Moliner, N.; Ferrando-Soria, J.; Julve, M.; Lloret, F.; Cano, J.; Cangussu, D. Trinuclear Cobalt(II) Triple Helicate with a Multidentate Bithiazolebis(oxamate) Ligand as a Supramolecular Nanomagnet. Inorg. Chem. 2022, 61, 5696–5700. [Google Scholar] [CrossRef] [PubMed]
- Bruker. APEX and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2012. [Google Scholar]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 3814. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm. 2002, 66, 378. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision, A.02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ. 2017, 4, 575. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; Thomas, S.P.; Shi, M.W.; Jayatilaka, D.; Spackman, M.A. Energy frameworks: Insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun. 2015, 51, 3735. [Google Scholar] [CrossRef] [PubMed]
- Rozalska, I.; Kulyk, P.; Kulszewicz-Bajer, I. Linear 1,4-coupled oligoanilines of defined length: Preparation and spectroscopic properties. New J. Chem. 2004, 28, 1235–1243. [Google Scholar] [CrossRef]
- Lin, R.-C.; Mohamed, G.M.; Kuo, S.-W. Benzoxazine/Triphenylamine-Based Dendrimers Prepared through Facile One-Pot Mannich Condensations. Macromol. Rapid Commun. 2017, 38, 1700251. [Google Scholar] [CrossRef]
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2 1987, S1–S19. [Google Scholar] [CrossRef]
- Farag, N.L.; Jethwa, R.B.; Beardmore, A.E.; Insinna, T.; O’Keefe, C.A.; Klusener, P.A.A.; Grey, C.P.; Wright, D.S. Triarylamines as Catholytes in Aqueous Organic Redox Flow Batteries. ChemSusChem 2023, 16, e202300128. [Google Scholar] [CrossRef]
- Tzeng, B.-C.; Chao, A.; Selvam, T.; Chang, T.-Y. Polyrotaxane frameworks containing N,N′,N″-(4,4′,4″-nitrilotris(4,1-phenylene))triisonicotinamide: Structural and luminescent properties. CrystEngComm 2013, 15, 5337–5344. [Google Scholar] [CrossRef]
- Armao, J.J.; Rabu, P.; Moulin, E.; Giuseppone, N. Long-Range Energy Transport via Plasmonic Propagation in a Supramolecular Organic Waveguide. Nano Lett. 2016, 16, 2800–2805. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.-C.; Li, K.-B.; Du, V.; Li, F.-M. Multi-Maleimides Bearing Electron-Donating Chromophores: Reversible Fluorescence and Aggregation Behavior. J. Am. Chem. Soc. 2004, 126, 12200–12201. [Google Scholar] [CrossRef]
- Padilla-Martínez, I.I.; Martínez-Martínez, F.J.; García-Báez, E.V.; Torres-Valencia, J.M.; Rojas-Lima, S.; Höpfl, H. Further insight into three center hydrogen bonding. Participation in tautomeric equilibria of heterocyclic amides. J. Chem. Soc. Perkin Trans. 2 2001, 1817–1823. [Google Scholar] [CrossRef]
- García-Báez, E.V.; Gómez-Castro, C.Z.; Höpfl, H.; Martínez-Martínez, F.J.; Padilla-Martínez, I.I. Ethyl N-phenyloxamate. Acta Cryst. 2003, C59, o541–o543. [Google Scholar] [CrossRef]
- Allen, F.H.; Baalham, C.A.; Lommerse, J.P.M.; Raithby, P.R. Carbonyl–Carbonyl Interactions can be Competitive with Hydrogen Bonds. Acta Cryst. 1998, B54, 320–329. [Google Scholar] [CrossRef]
- Sun, G.-X.; Min, L.-J.; Sun, N.-B.; Han, L.; Wu, H.-K.; Weng, J.-Q.; Liu, X.-H. Synthesis, crystal structure, Hirshfeld surface analysis, energy frameworks, molecular docking and DFT calculation of new pyrazole-4-carboxamide compound as antifungal agent. J. Molec. Str. 2024, 1317, 139145. [Google Scholar] [CrossRef]
- Al-Wahaibi, L.H.; Gudimetla, S.R.S.; Blacque, O.; El-Emam, A.A.; Percino, M.J.; Thamotharan, S. Interplay of weak noncovalent interactions in (E)-4-chloro-N’-(thiophen-2-ylmethylene)benzohydrazide: Insights from Hirshfeld surface, PIXEL energy and QTAIM analyses. J. Molec. Str. 2024, 1315, 138822. [Google Scholar] [CrossRef]
- Dutta, A.; Dutt, A.; Drew, M.G.B.; Pramanik, A. Supramolecular helix and β-sheet through self-assembly of two isomeric tetrapeptides in crystals and formation of filaments and ribbons in the solid state. Supramol. Chem. 2008, 20, 625. [Google Scholar] [CrossRef]
- Kong, V.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549. [Google Scholar] [CrossRef]
- Walsh, P.S.; Kusaka, R.; Buchanan, E.G.; James, W.H.; Fisher, B.F.; Gellman, S.H.; Zwier, T.S. Cyclic Constraints on Conformational Flexibility in γ Peptides: Conformation Specific IR and UV Spectroscopy. J. Phys. Chem. A 2013, 117, 12350. [Google Scholar] [CrossRef] [PubMed]
- Babu, N.J.; Cherukuvada, S.; Thakuria, R.; Nangia, A. Conformational and Synthon Polymorphism in Furosemide (Lasix). Cryst. Growth Des. 2010, 10, 1979. [Google Scholar] [CrossRef]
- Chan, K.L.A.; Fleming, O.S.; Kazarian, S.G.; Vassou, D.; Chryssikos, G.D.; Gionis, V. Polymorphism and devitrification of nifedipine under controlled humidity: A combined FTRaman, IR and Raman microscopic investigation. J. Raman Spectrosc. 2004, 35, 353. [Google Scholar] [CrossRef]
- Mendham, A.P.; Palmer, R.A.; Potter, B.S.; Dines, T.J.; Snowden, M.J.; Withnall, R.; Chowdhry, B.Z. Vibrational spectroscopy and crystal structure analysis of two polymorphs of the di-amino acid peptide cyclo(L-Glu-L-Glu). J. Raman Spectrosc. 2010, 41, 288. [Google Scholar] [CrossRef]
- Martínez-Martínez, F.J.; Padilla-Martínez, I.I.; Brito, M.A.; Geniz, E.D.; Rojas, R.C.; Saavedra, J.B.R.; Höpfl, H.; Tlahuext, M.; Contreras, R. Three-center intramolecular hydrogen bonding in oxamide derivatives. NMR and X-ray diffraction study. J. Chem. Soc. Perkin Trans. 2 1998, 401–406. [Google Scholar] [CrossRef]
1 | 2 | |
---|---|---|
Crystal Data | ||
Chemical formula | C27H30N4O6 | C30H30N4O9 |
Molecular weight [g/mol] | 506.55 | 590.59 |
Crystal system | Trigonal | triclinic |
Space group | P-3 (No.147) | P-1 (No. 2) |
a, b, c [Å] | 17.536 (2), 17.536 (2), 19.103 (2) | 12.8325 (2), 13.6938 (3), 26.7504 (5) |
α, β, γ [deg] | 90, 90, 120 | 91.535 (2), 90.038 (2), 113.120 (2) |
V [Å3] | 5087.333 | 4321.320 |
Z | 8 | 6 |
D (calc) [g/cm3] | 1.323 | 1.362 |
µ (MoKα) [/mm ] | 0.095 | 0.102 |
F (000) | 2144 | 1860 |
Crystal size [mm], color | 0.42 × 0.25 × 0.15, purple | 0.33 × 0.28 × 0.25, orange |
Data Collection | ||
Temperature (K) | 150 | 100 |
Radiation [Å] | Mo Kα 0.71073 | Mo Kα 0.71073 |
Theta Min-Max [Deg] | 2.3, 25.0 | 2.3, 27.9 |
Dataset | 20:−20; 20:−20; 22:−22 | 16:−16; 17:−17; 34:−34 |
Tot., Uniq. Data, R(int) | 147,529; 5790; 0.127 | 124,561; 20,056; 0.084 |
Observed Data [I > 0.0 sigma (I)] | 4049 | 11,684 |
Refinement | ||
Nref, Npar | 5790; 490 | 20,056; 1301 |
R, wR2, S | 0.063, 0.147, 1.042 | 0.060, 0.142, 1.031 |
Max. and av. shift/error | 0.00, 0.00 | 0.001, 0.000 |
Min. and max. resd. Dens. [e/Å3] | −0.645, 0.676 | −0.064, 0.55 |
Comp. | Angle/° between NcPh Planes (σ) | Angle/° between Ph and CNCOR Planes (σ) |
---|---|---|
TAPA [60] | 67(8) | |
A [61] | 60.8(3.1) | 8(3) |
B [62] | 63.0(4.5) | 15.2, 17.2, 65.2 |
1 | 67.5(4.1) | 39(7) |
C [29] | 76.06(0.03) | 28.9(1) |
D [63] | 83.3 | 53.5 |
E [63] | 82.6 | 60.5 |
Interaction | Symmetry Code | D—H/Å | H∙∙∙A/Å | D∙∙∙A/Å | D—H∙∙∙A/° |
---|---|---|---|---|---|
N7—H7∙∙∙O28 | [−x + y, −x, z] | 0.90(3) | 2.10(3) | 2.969(3) | 162(3) |
N17—H17∙∙∙O38 | [x, y, z] | 0.86(5) | 2.20(4) | 3.010(3) | 159(4) |
N27—H57∙∙∙O18 | [x − y, x, z] | 0.88(4) | 2.08(4) | 2.934(4) | 165(4) |
N37—H37∙∙∙O8 | [x − y, x, 1−z] | 0.83(4) | 2.15(94) | 2.956(3) | 164(4) |
C31BB—H31FB∙∙∙Cg(3) | [−y, x − y, z] | 2.53 | 3.392(6) | 147 | |
C31BB—H31DB∙∙∙Cg(4) | [−x + y, 1 − x, z] | 2.50 | 3.453(6) | 165 | |
C31AA—H31AA∙∙∙Cg(2) | [−x + y, 1 − x, z] | 2.74 | 3.507(104) | 135 |
Interaction | Symmetry Code | D—H/Å | H∙∙∙A/Å | D∙∙∙A/Å | D—H∙∙∙A/° |
---|---|---|---|---|---|
N7—H7∙∙∙O59 | [x, 1 + y, z] | 0.88(3) | 2.35(3) | 3.181(3) | 158(2) |
N17—H17∙∙∙O9 | [x−1, y−1, z] | 0.88(3) | 2.45(3) | 3.212(3) | 145(3) |
N27—H27∙∙∙O8 | [1 + x, y, z] | 0.79(3) | 2.32(3) | 3.105(3) | 172(3) |
N37—H37∙∙∙O29 | [x, y−1, z] | 0.85(2) | 2.44(2) | 3.252(3) | 160(2) |
N47—H47∙∙∙O39 | [1 + x, 1 + y, z] | 0.83(3) | 2.55(3) | 3.254(3) | 143(2) |
N57—H57∙∙∙O38 | [1 + x, y, z] | 0.85(3) | 2.19(3) | 3.019(3) | 164(2) |
N57—H57∙∙∙O40 | [1 + x, y, z] | 0.85(3) | 2.58(2) | 3.134(2) | 123(2) |
N67—H67∙∙∙O38 | [1 + x, y, z] | 0.90(3) | 2.48(3) | 3.299(3) | 151(2) |
N87—H87∙∙∙O78 | [1 + x, y, z] | 0.88(4) | 2.09(4) | 2.945(4) | 161(3) |
C71—H71B∙∙∙O28BA | [1−x, 1 − y, 1 − z] | 0.99 | 2.33 | 2.908(14) | 116 |
C105—H105∙∙∙O59 | [x, 1 + y, z] | 0.95 | 2.56 | 3.350(3) | 140 |
C123—H123∙∙∙O8 | [1 + x, y, z] | 0.95 | 2.56 | 3.374(3) | 144 |
C205—H205∙∙∙O29 | [x, y − 1, z] | 0.95 | 2.56 | 3.405(3) | 148 |
C213—H213∙∙∙O38 | [1 + x, y, z] | 0.95 | 2.51 | 3.316(3) | 142 |
C316—H316∙∙∙O88 | [x, y, z] | 0.95 | 2.45 | 3.406(3) | 174 |
C322—H322∙∙∙O89AA | [2−x, −y, −z] | 0.95 | 2.56 | 3.438(7) | 154 |
C323—H323∙∙∙O88AB | [2−x, −y, −z] | 0.95 | 2.52 | 3.372(11) | 149 |
C61—H61B∙∙∙Cg(3) | [x, y, z] | 2.96 | 3.833(4) | 148 | |
C81—H81A∙∙∙Cg(4) | [1−x, 1 − y, −z] | 2.75 | 3.651(3) | 152 | |
C126—H126∙∙∙Cg(9) | [x, y, z] | 2.93 | 3.821(3) | 156 | |
C216—H216∙∙∙Cg(5) | [x, y, z] | 2.97 | 3.568(2) | 157 |
Interaction | Symmetry Code | C∙∙∙A | O∙∙∙A | C—O∙∙∙A |
---|---|---|---|---|
C58—O58∙∙∙Cg(1) | x, y, z | 3.676(2) | 3.428(3) | 68.78(14) |
C18—O18∙∙∙C89A | −1 + x, −1 + y, z | 3.578(8) | 3.094(8) | 103.2(2) |
C18—O18∙∙∙C88 | −1 + x, −1 + y, z | 3.226(5) | 3.089(8) | 85.2(3) |
C68—O68∙∙∙C28B | 1 + x, 1 + y, z | 4.023(19) | 2.971(17) | 93.5(16) |
C88—O88B∙∙∙C18 | 1 + x, 1 + y, z | 3.226(5) | 3.113(2) | 84.5(18) |
C49—O49∙∙∙C39 | 1 + x, 1 + y, z | 3.982(4)/3.723(4) | 3.185(3) | 122.85(6) |
C59—O59∙∙∙C38 | 1 + x, y, z | 4.018(16) | 3.013(3) | 139.03(16) |
C59—O59∙∙∙C39 | 1 + x, y, z | 4.221(4) | 3.213(3) | 139.77(17) |
C19—O19∙∙∙C9 | −1 + x, −1 + y, z | 3.857(4) | 3.036(3) | 124.9(2) |
C78—O78∙∙∙C79 | 3 − x, 1 − y, −z | 3.415(4) | 2.937(4) | 102.07(17) |
C78—O78∙∙∙C78 | 3 − x, 1 − y, −z | 3.240(4) | 3.096(4) | 85.45(15) |
C29—O29∙∙∙C9 | −1 + x, y, z | 4.160(4) | 3.195(3) | 136.17(17) |
C29—O29∙∙∙C8 | −1 + x, y, z | 4.046(4) | 3.050(3) | 138.70(15) |
Interaction | Molecules | −Eelec | −Epol | −Edisp | Erep | −Etot | %Eelec | %Edisp | R c/Å |
---|---|---|---|---|---|---|---|---|---|
Comp. 1 | |||||||||
N7—H7∙∙∙O28 | N1∙∙∙N3 | 24.7 | 3.6 | 16.0 | 15.6 | 28.8 | 50.1 | 39.4 | 11.45 |
N17—H17∙∙∙O38 | N2∙∙∙N4 | 22.7 | 4.0 | 20.6 | 17.2 | 30.2 | 42.5 | 46.8 | 11.08 |
N27—H27∙∙∙O18 | N3∙∙∙N2 | 27.1 | 4.8 | 20.0 | 19.5 | 32.4 | 46.5 | 41.7 | 11.12 |
N37—H37∙∙∙O8 | N4∙∙∙N1 | 101.8 | 16.7 | 81.7 | 85.4 | 114.8 | 45.3 | 44.1 | 4.84 |
Comp. 2 | |||||||||
N7—H7∙∙∙O59 C105—H105∙∙∙O59 N37—H37∙∙∙O29 C205—H205∙∙∙O29 | N1∙∙∙N2 N2∙∙∙N1 | 33.2 | 5.5 | 38.1 | 30.0 | 46.8 | 38.1 | 53.0 | 11.34 |
N87—H87∙∙∙O78 | N3∙∙∙N3 | 31.2 | 6.6 | 31.1 | 0.0 | 68.9 | 39.8 | 48.2 | 12.83 |
N27—H27∙∙∙O8 C29—O29∙∙∙C9 C29—O9∙∙∙C8 C123—H123∙∙∙O8 | N1∙∙∙N1 | 35.2 | 6.2 | 29.3 | 0.0 | 70.7 | 44.2 | 44.6 | 12.83 |
N57—H57∙∙∙O38 C59—O59∙∙∙C38 C59—O59∙∙∙C39 C213—H213∙∙∙O38 | N2∙∙∙N2 | 35.2 | 6.2 | 29.3 | 0.0 | 70.7 | 44.2 | 44.6 | 12.83 |
N67—H67∙∙∙O38 | N3∙∙∙N2 | 7.7 | 2.7 | 16.6 | 6.6 | 20.5 | 24.3 | 63.5 | 9.30 |
N17—H17∙∙∙O9 C19—O19∙∙∙C9 | N1∙∙∙N1 | 14.4 | 2.4 | 28.5 | 0.0 | 45.2 | 27.5 | 66.1 | 14.64 |
N47—H47∙∙∙O39 C49—O49∙∙∙C39 | N2∙∙∙N2 | 14.4 | 2.4 | 28.5 | 0.0 | 45.2 | 27.5 | 66.1 | 14.64 |
C126—H126∙∙∙Cg(9) C216—H216∙∙∙Cg(5) | N1∙∙∙N2 N2∙∙∙N1 | 6.7 | 1.5 | 57.8 | 18.4 | 47.6 | 8.4 | 88.9 | 3.94 |
C78—O78∙∙∙C79 C78—O78∙∙∙C78 | N3∙∙∙N3 | 11.2 | 1.6 | 26.8 | 0.0 | 39.6 | 24.4 | 70.9 | 14.25 |
C18—O18∙∙∙C89A C18—O18∙∙∙C88 C68—O68∙∙∙C28B C88—O88B∙∙∙C18 | N1∙∙∙N3 N1∙∙∙N3 N3∙∙∙N1 N3∙∙∙N1 | 38.5 | 11.1 | 88.8 | 41.3 | 97.1 | 23.7 | 66.5 | 7.49 |
C58—O58∙∙∙Cg(1) C316—H316∙∙∙O58 | N2∙∙∙N3 N3∙∙∙N2 | 29.3 | 6.1 | 75.7 | 34.5 | 76.6 | 22.5 | 70.7 | 8.87 |
Comp. | CO | NCO | C1 | C2/6 | C3 | C4 | C5 | CH2 | Me |
---|---|---|---|---|---|---|---|---|---|
1 (DMSO-d6) | 158.8 | 147.5 | 128.9 | 124.8 | 139.1 | 124.8 | 65.2 | 19.7 | |
1 | 158(4) | 147(1) 146(3) | 129(1) 127(7) | 124(2) 123(1) 121(1) | 136(1) 135(3) | 126(4) | 63(1) 62(3) | 18(2) 17(1) 15(1) | |
2 (DMSO-d6) | 161.2 | 155.6 | 144.1 | 124.1 | 122.3 | 133.0 | 122.3 | 62.8 | 14.3 |
2 | 165(3) 164(6) | 157(5) 156(1) 154(3) | 146(5) 148(1) 144(3) | 128(4) 125(14) | 121(7) 118(2) | 138(1) 135(2) 131(6) | 123(9) | 66(6) 64(3) | 18(2) 17(1) 16(3) 15(2) 12(1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna-Martínez, M.M.; Morales-Santana, M.; Santiago-Quintana, J.M.; García-Báez, E.V.; Narayanan, J.; Rosales-Hoz, M.d.J.; Padilla-Martínez, I.I. Crystal Structure, Supramolecular Organization, Hirshfeld Analysis, Interaction Energy, and Spectroscopy of Two Tris(4-aminophenyl)amine-Based Derivatives. Crystals 2024, 14, 855. https://doi.org/10.3390/cryst14100855
Luna-Martínez MM, Morales-Santana M, Santiago-Quintana JM, García-Báez EV, Narayanan J, Rosales-Hoz MdJ, Padilla-Martínez II. Crystal Structure, Supramolecular Organization, Hirshfeld Analysis, Interaction Energy, and Spectroscopy of Two Tris(4-aminophenyl)amine-Based Derivatives. Crystals. 2024; 14(10):855. https://doi.org/10.3390/cryst14100855
Chicago/Turabian StyleLuna-Martínez, Mayra M., Marcos Morales-Santana, José Martín Santiago-Quintana, Efrén V. García-Báez, Jayanthi Narayanan, María de Jesús Rosales-Hoz, and Itzia I. Padilla-Martínez. 2024. "Crystal Structure, Supramolecular Organization, Hirshfeld Analysis, Interaction Energy, and Spectroscopy of Two Tris(4-aminophenyl)amine-Based Derivatives" Crystals 14, no. 10: 855. https://doi.org/10.3390/cryst14100855
APA StyleLuna-Martínez, M. M., Morales-Santana, M., Santiago-Quintana, J. M., García-Báez, E. V., Narayanan, J., Rosales-Hoz, M. d. J., & Padilla-Martínez, I. I. (2024). Crystal Structure, Supramolecular Organization, Hirshfeld Analysis, Interaction Energy, and Spectroscopy of Two Tris(4-aminophenyl)amine-Based Derivatives. Crystals, 14(10), 855. https://doi.org/10.3390/cryst14100855