# A Novel Approach to Grain Shape Factor in 3D Hexagonal Cellular Automaton

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Model and Calculation

_{grain}is the surface area of the actual grain, S

_{sphere}is the surface area of the sphere with the same volume as the grain, and S

_{chain}is the surface area of the chain with the same volume as the grain. S

_{sphere}and S

_{chain}can be calculated by Equations (3) and (4), respectively. N

_{grain_surf}is the number of surface cells of the grain (blue spheres in Figure 2c or Figure 2d), N

_{sphere}is the number of surface cells of the sphere (Figure 2a), and N

_{chain}is the number of surface cells of the chain (Figure 2b). S

_{cell}is the area of a cell’s great circle on its circumscribed sphere. This value can be ignored because it cancels out. Therefore, Equation (2) turns into:

_{sphere}and N

_{chain}in Equation (5), we need to build models of spheres and chains with the same volume as the grain. The volume is N

_{volume}, which is the number of cells in the grain. We use a step-by-step growth CA method to add cells to the models. For spheres, we choose the cell that minimizes the surface-area increase. For chains, we choose the cell that maximizes it. This way, we can simulate different grain morphologies with different sphericity degrees. The spheres have a high sphericity degree close to 0, while the chains have a low sphericity degree close to 1. The step-by-step growth CA method allows us to control the size and shape of the grains by adjusting the number and location of the cells added. Then, we count N

_{sphere}and N

_{chain}for each model with different N

_{volume}values (from 1 to 5000). We fit curves for N

_{sphere}and N

_{chain}as functions of N

_{volume}by least squares and plot them in Figure 3 with the actual values [30].

_{chain}and N

_{volume}have a linear relationship in the chain model, implying that each N

_{volume}adds six units of surface area. In contrast, N

_{sphere}has a more complex relationship with N

_{volume}in the sphere model, which can be approximated by Equation (7). To assess the quality of this approximation, we use residual analysis (Equation (8)), where R is the average residual, and a good fit is expected to have R < 0.05 [31]. N

_{i}and ${\widehat{N}}_{i}$ are the actual and fitted values of N

_{sphere}when N

_{volume}= i. However, Equation (7) has a high R value of 0.115, indicating a poor fit, especially when N

_{volume}< 200 (see red dotted curves in Figure 4a,b).

_{volume}, the functions for each segment, and the breakpoints between segments. Then, we can use various methods to estimate the parameters of each function and minimize the error between the fitted values and the actual values.

_{sphere}for any given N

_{volume}. Therefore, with Equations (5) and (9), we can compute the shape factor A of any grain in 3D-HEX using its N

_{volume}and N

_{grain}

_{_surf}, which are easy and efficient to obtain.

## 3. Model Validation

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Hashemi, S.; Kalidindi, S.R. A Machine Learning Framework for the Temporal Evolution of Microstructure during Static Recrystallization of Polycrystalline Materials Simulated by Cellular Automaton. Comput. Mater. Sci.
**2021**, 188, 110132. [Google Scholar] [CrossRef] - Park, J.; Rout, M.; Min, K.-M.; Chen, S.-F.; Lee, M.-G. A Fully Coupled Crystal Plasticity-Cellular Automata Model for Predicting Thermomechanical Response with Dynamic Recrystallization in AISI 304LN Stainless Steel. Mech. Mater.
**2022**, 167, 104248. [Google Scholar] [CrossRef] - Mohebbi, M.S.; Ploshikhin, V. Implementation of Nucleation in Cellular Automaton Simulation of Microstructural Evolution during Additive Manufacturing of Al Alloys. Addit. Manuf.
**2020**, 36, 101726. [Google Scholar] [CrossRef] - Ogawa, J.; Natsume, Y. Three-Dimensional Large-Scale Grain Growth Simulation Using a Cellular Automaton Model. Comput. Mater. Sci.
**2021**, 199, 110729. [Google Scholar] [CrossRef] - Gu, C.; Moodispaw, M.P.; Luo, A.A. Cellular Automaton Simulation and Experimental Validation of Eutectic Transformation during Solidification of Al-Si Alloys. Npj Comput. Mater.
**2022**, 8, 134. [Google Scholar] [CrossRef] - Liu, S.; Hong, K.; Shin, Y.C. A Novel 3D Cellular Automata-Phase Field Model for Computationally Efficient Dendrite Evolution during Bulk Solidification. Comput. Mater. Sci.
**2021**, 192, 110405. [Google Scholar] [CrossRef] - Nutaro, J.; Stump, B.; Shukla, P. Discrete Event Cellular Automata: A New Approach to Cellular Automata for Computational Material Science. Comput. Mater. Sci.
**2023**, 219, 111990. [Google Scholar] [CrossRef] - Gu, C.; Ridgeway, C.D.; Cinkilic, E.; Lu, Y.; Luo, A.A. Predicting Gas and Shrinkage Porosity in Solidification Microstructure: A Coupled Three-Dimensional Cellular Automaton Model. J. Mater. Sci. Technol.
**2020**, 49, 91–105. [Google Scholar] [CrossRef] - Liu, S.; Jiang, Y.; Lu, R.; Cheng, X.; Li, J.; Chen, Y.; Tian, G. Cellular Automata Simulation of Grain Growth of Powder Metallurgy Nickel-Based Superalloy. arXiv
**2021**, arXiv:2106.04888. [Google Scholar] [CrossRef] - El Amri, N.; El Amri, A.; El Bouayadi, R.; El Hassouani, Y.; Bouachrine, M.; Zorkani, I. Modeling Phase Change Materials Using Cellular Automata. In Advances in Intelligent Systems and Computing; Benyounes, H., Bouchaala, F.M., Eds.; Springer: Cham, Switzerland, 2020; Volume 1076, pp. 161–170. [Google Scholar] [CrossRef]
- Chen, F.; Tian, X.; Wu, G.; Zhu, H.; Ou, H.; Cui, Z. Coupled Quantitative Modeling of Microstructural Evolution and Plastic Flow during Continuous Dynamic Recrystallization. Int. J. Plast.
**2022**, 156, 103372. [Google Scholar] [CrossRef] - Bays, C. Cellular Automata in Triangular, Pentagonal, and Hexagonal Tessellations. In Cellular Automata: A Volume in the Encyclopedia of Complexity and Systems Science, 2nd ed.; Adamatzky, A., Ed.; Encyclopedia of Complexity and Systems Science Series; Springer: New York, NY, USA, 2018; pp. 1–10. ISBN 978-1-4939-8700-9. [Google Scholar]
- Fuyong, S.; Wenli, L.; Zhi, W. Three-Dimensional Cellular Automaton Simulation of Austenite Grain Growth of Fe-1C-1.5Cr Alloy Steel. J. Mater. Res. Technol.
**2020**, 9, 180–187. [Google Scholar] [CrossRef] - Rolchigo, M.; Plotkowski, A.; Belak, J. Sensitivity of Cellular Automata Grain Structure Predictions for High Solidification Rates. Comput. Mater. Sci.
**2021**, 196, 110498. [Google Scholar] [CrossRef] - Ren, Z.; Pu, Z.; Liu, D.-R. Prediction of Grain-Size Transition during Solidification of Hypoeutectic Al-Si Alloys by an Improved Three-Dimensional Sharp-Interface Model. Comput. Mater. Sci.
**2022**, 203, 111131. [Google Scholar] [CrossRef] - Shterenlikht, A.; Margetts, L. Three-Dimensional Cellular Automata Modelling of Cleavage Propagation across Crystal Boundaries in Polycrystalline Microstructures. Proc. R. Soc. A Math. Phys. Eng. Sci.
**2015**, 471, 20150039. [Google Scholar] [CrossRef] [Green Version] - Gu, C.; Lu, Y.; Ridgeway, C.D.; Cinkilic, E.; Luo, A.A. Three-Dimensional Cellular Automaton Simulation of Coupled Hydrogen Porosity and Microstructure during Solidification of Ternary Aluminum Alloys. Sci. Rep.
**2019**, 9, 13099. [Google Scholar] [CrossRef] [Green Version] - Li, X.; Yang, X.; Xue, C.; Wang, S.; Zhang, Y.; Wang, B.; Wang, J.; Lee, P.D. Predicting Hydrogen Microporosity in Long Solidification Range Ternary Al-Cu-Li Alloys by Coupling CALPHAD and Cellular Automata Model. Comput. Mater. Sci.
**2023**, 222, 112120. [Google Scholar] [CrossRef] - Liu, R.; Li, K.; Zhou, G.; Tang, W.; Shen, Y.; Tang, D.; Li, D. Simulation of Strain Induced Abnormal Grain Growth in Aluminum Alloy by Coupling Crystal Plasticity and Phase Field Methods. Trans. Nonferrous Met. Soc. China
**2022**, 32, 3873–3886. [Google Scholar] [CrossRef] - Nabavizadeh, S.A.; Eshraghi, M.; Felicelli, S.D. Three-Dimensional Phase Field Modeling of Columnar to Equiaxed Transition in Directional Solidification of Inconel 718 Alloy. J. Cryst. Growth
**2020**, 549, 125879. [Google Scholar] [CrossRef] - Gu, C.; Ridgeway, C.D.; Moodispaw, M.P.; Luo, A.A. Multi-Component Numerical Simulation and Experimental Study of Dendritic Growth during Solidification Processing. J. Mater. Process. Technol.
**2020**, 286, 116829. [Google Scholar] [CrossRef] - Wang, Y.; Li, Q.; Zhang, X.; Liu, W. A Continuous-Discontinuous Cellular Automaton Method for Cracks Growth and Coalescence in Brittle Material. Acta Mech. Sin.
**2014**, 30, 1239–1255. [Google Scholar] [CrossRef] - Lee, J.; Kim, H.; Lee, C.; Kim, N. A Fully Coupled Crystal Plasticity-Cellular Automata Model for Dynamic Recrystallization of Metallic Materials. Int. J. Plast.
**2022**, 149, 103127. [Google Scholar] [CrossRef] - Chen, L.; Liu, F.; Jin, S.; Wang, Y.; Fu, P.; Yang, G. Cellular Automata Simulation of Grain Growth of Powder Metallurgy Ni-Based FGH98 Superalloys during Solution Treatment. J. Iron Steel Res. Int.
**2023**, 30, 1–11. [Google Scholar] - Du, L.; Zhang, P.; Wang, L.; Zheng, B.; Du, H. Phase Field Simulation on the Effect of Micropore Morphology on Grain Growth in Porous Ceramics. Comput. Mater. Sci.
**2017**, 131, 196–201. [Google Scholar] [CrossRef] - Cagigas-Muñiz, D.; Diaz-del-Rio, F.; Sevillano-Ramos, J.L.; Guisado-Lizar, J.-L. Efficient Simulation Execution of Cellular Automata on GPU. Simul. Model. Pract. Theory
**2022**, 118, 102519. [Google Scholar] [CrossRef] - Ye, Z.; Hilden, M.M.; Yahyaei, M. A 3D Cellular Automata Ore Stockpile Model—Part 1: Simulation of Size Segregation. Miner. Eng.
**2022**, 187, 107816. [Google Scholar] [CrossRef] - Rorato, R.; Arroyo, M.; Andò, E.; Gens, A. Sphericity Measures of Sand Grains. Eng. Geol.
**2019**, 254, 43–53. [Google Scholar] [CrossRef] - Cruz-Matías, I.; Ayala, D.; Hiller, D.; Gutsch, S.; Zacharias, M.; Estradé, S.; Peiró, F. Sphericity and Roundness Computation for Particles Using the Extreme Vertices Model. J. Comput. Sci.
**2019**, 30, 28–40. [Google Scholar] [CrossRef] - Ferreira Schon, A.; Apoena Castro, N.; dos Santos Barros, A.; Eduardo Spinelli, J.; Garcia, A.; Cheung, N.; Luiz Silva, B. Multiple Linear Regression Approach to Predict Tensile Properties of Sn-Ag-Cu (SAC) Alloys. Mater. Lett.
**2021**, 304, 130587. [Google Scholar] [CrossRef] - Linear Regression Using R: An Introduction to Data Modeling. Available online: https://open.umn.edu/opentextbooks/textbooks/399 (accessed on 12 March 2023).
- Crowder, S.; Delker, C.; Forrest, E.; Martin, N. Monte Carlo Methods for the Propagation of Uncertainties. In Introduction to Statistics in Metrology; Crowder, S., Delker, C., Forrest, E., Martin, N., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 153–180. ISBN 978-3-030-53329-8. [Google Scholar]

**Figure 2.**Schematic view of (

**a**) volume-equivalent-sphere, (

**b**) volume-equivalent-chain, and (

**c**,

**d**) two grains with volume of 500.

**Figure 3.**Relationships between surface cell number of volume-equivalent-sphere (red curve and blue dots), volume-equivalent-chain (black curve and green dots), and their corresponding grain volume number.

**Figure 4.**Comparison of fitting effect between Equation (9) and Equation (7) with volume number within a range of (

**a**) 1~79, (

**b**) 80~199, (

**c**) 200~599, (

**d**) 600~1199, (

**e**) 1200~1799, and (

**f**) 1800~5000.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bao, L.; Shi, J.
A Novel Approach to Grain Shape Factor in 3D Hexagonal Cellular Automaton. *Crystals* **2023**, *13*, 544.
https://doi.org/10.3390/cryst13030544

**AMA Style**

Bao L, Shi J.
A Novel Approach to Grain Shape Factor in 3D Hexagonal Cellular Automaton. *Crystals*. 2023; 13(3):544.
https://doi.org/10.3390/cryst13030544

**Chicago/Turabian Style**

Bao, Lei, and Jun Shi.
2023. "A Novel Approach to Grain Shape Factor in 3D Hexagonal Cellular Automaton" *Crystals* 13, no. 3: 544.
https://doi.org/10.3390/cryst13030544