Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Conventional Gemological Features
3.2. Composition and Crystal Structure Analysis of Scapolite
3.2.1. X-ray Fluorescence Spectrum and EPMA Analysis
3.2.2. XRD Analysis
3.3. Spectroscopy Analysis of Scapolite
3.3.1. Infrared Spectra Analysis
3.3.2. Raman Spectra Analysis
3.3.3. UV-Vis Analysis
3.4. Luminescence Properties of Scapolite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shaw, D.M. The Geochemistry of Scapolite Part I. Previous Work and General Mineralogy. J. Petrol. 1960, 1, 218–260. [Google Scholar] [CrossRef]
- Choudhary, G. Purple scapolite. Gems Gemol. 2015, 51, 202–203. [Google Scholar]
- Milkey, R.G. Infrared Spectra of Some Tectosilicates. Am. Mineral. 1960, 45, 990–1007. [Google Scholar]
- Newton, R.C.; Goldsmith, J.R. Stability of the end-member scapolites: 3NaAlSi3O8·NaCl, 3CaAl2Si2O8·CaCO3, 3CaAl2Si2O8·CaSO4. Z. Krist. Cryst. Mater. 1976, 143, 333–353. [Google Scholar] [CrossRef]
- Litvinenko, A.K.; Moiseeva, S.B.; Odinaev, S.A.; Utenkov, V.A. Geology of the Chernogorskoe Gem-Quality Scapolite Deposit (Central Pamirs, Tajikistan). Geol. Ore Depos. 2019, 61, 481–493. [Google Scholar] [CrossRef]
- Almeida, K.M.F.; Jenkins, D.M. A comparison between the stability fields of a Cl-rich scapolite and the end-member marialite. Am. Mineral. 2019, 104, 1788–1799. [Google Scholar] [CrossRef]
- Filiberto, J.; Treiman, A.H.; Giesting, P.A.; Goodrich, C.A.; Gross, J. High-temperature chlorine-rich fluid in the martian crust: A precursor to habitability. Earth Planet. Sci. Lett. 2014, 401, 110–115. [Google Scholar] [CrossRef]
- Zeng, L.; Zhao, X.; Hammerli, J.; Fan, T.; Spandler, C. Tracking fluid sources for skarn formation using scapolite geochemistry: An example from the Jinshandian iron skarn deposit, Eastern China. Miner. Depos. 2019, 55, 1029–1046. [Google Scholar] [CrossRef]
- Pauling, L. The structure of some sodium and calcium aluminosilicates. Proc. Natl. Acad. Sci. USA 1930, 16, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Schiebold, E.; Seumel, G. Über die Kristallstruktur von Skapolith. Z. Krist. Cryst. Mater. 1932, 81, 110–134. [Google Scholar] [CrossRef]
- Papike, J.J.; Zoltai, T. The crystal structure of a marialite scapolite. Am. Mineral. 1965, 50, 641–655. [Google Scholar]
- Antao, S.M.; Hassan, I. The structures of marialite (Me 6) and meionite (Me 93) in space groups P42/n and I4/m, and the absence of phase transitions in the scapolite series. Powder Diffr. 2011, 26, 119–125. [Google Scholar] [CrossRef]
- Wehrenberg, J.P. The Infrared Absorption Spectra of Scapolite. Am. Mineral. 1971, 56, 1639. [Google Scholar]
- Swayze, G.A.; Clark, R.N. Infrared-spectra and crystal-chemistry of scapolites–implications for martian mineralogy. J. Geophys. Res. Solid Earth Planets 1990, 95, 14481–14495. [Google Scholar] [CrossRef]
- Aierken, S.; Kusachi, I.; Kobayashi, S.; Atobe, K.; Yamashita, N. Photoluminescence spectra of S2− center in natural and heat-treated scapolites. Phys. Chem. Miner. 2008, 35, 137–145. [Google Scholar] [CrossRef]
- Blumentritt, F.; Latouche, C.; Morizet, Y.; Caldes, M.T.; Jobic, S.; Fritsch, E. Unravelling the Origin of the Yellow-Orange Luminescence in Natural and Synthetic Scapolites. J. Phys. Chem. Lett. 2020, 11, 4591–4596. [Google Scholar] [CrossRef]
- Xu, B.; Hou, Z.Q.; Griffin, W.L.; Zheng, Y.C.; Wang, T.; Guo, Z.; Hou, J.; Santosh, M.; O’Reilly, S.Y. Cenozoic lithospheric architecture and metallogenesis in Southeastern Tibet. Earth-Sci. Rev. 2021, 214, 03472. [Google Scholar] [CrossRef]
- Feininger, T. An Introduction to the Rock-Forming Minerals (third edition). Can. Mineral. 2013, 51, 663–664. [Google Scholar] [CrossRef]
- Pezzotta, F.; Superchi, M.; Gambini, E.; Castaman, E. Yellow Scapolite from Ihosy, Madagascar. Gems Gemol. 2010, 46, 274–279. [Google Scholar]
- Schipf, R.G. Color Encyclopedia of Gemstones (Book Review). Libr. J. 1978, 103, 673. [Google Scholar]
- Ulbrich, H.H. Crystallographic data and refractive indices of scapolites. Am. Mineral. 1973, 58, 81–89. [Google Scholar]
- Xu, B.; Hou, Z.Q.; Griffin, W.L.; Lu, Y.; Belousova, E.; Xu, J.F.; O’Reilly, S.Y. Recycled volatiles determine fertility of porphyry deposits in collisional settings. Am. Mineral. 2021, 106, 656–661. [Google Scholar] [CrossRef]
- Xu, B.; Hou, Z.Q.; Griffin, W.L.; O’Reilly, S.Y. Apatite halogens and Sr–O and zircon Hf–O isotopes: Recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chem. Geol. 2022, 605, 120924. [Google Scholar] [CrossRef]
- Sokolova, E.; Hawthorne, F.C. Hawthorne.The crystal chemistry of the scapolite-group minerals. I. Crystal structure and long-range order. Can. Mineral. 2009, 46, 1527–1554. [Google Scholar] [CrossRef]
- Schwarcz, H.P.; Speelman, E.L. Determination of sulfur and carbon coordination in scapolite by infra-red absorption spectrophotometry. Am. Mineral. 1965, 50, 656. [Google Scholar]
- You, J.L.; Jiang, G.C.; Hou, H.Y.; Chen, H.; Wu, Y.Q.; Xu, K.D. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates. J. Raman Spectrosc. 2005, 36, 237–249. [Google Scholar] [CrossRef]
- Mysen, B.O.; Virgo, D.; Scarfe, C.M. Scarfe.Relations between the anionic structure and viscosity of silicate melts; a Raman spectroscopic study. Am. Mineral. 1980, 65, 690–710. [Google Scholar]
- McMillan, P. Structural studies of silicate glasses and melts; applications and limitations of Raman spectroscopy? Am. Mineral. 1984, 69, 622–644. [Google Scholar]
- McMillan, P.; Wolf, G.; Poe, B.T. Vibrational spectroscopy of silicate liquids and glasses. Chem. Geol. 1992, 96, 351–366. [Google Scholar] [CrossRef]
- Pan, F.; Yu, X.; Mo, X. Raman spectra of framework silicate minerals. J. Chin. Ceram. Soc. 2009, 37, 2043. [Google Scholar]
- Akaogi, M.; Ross, N.L.; McMillan, P.; Navrotsky, A. The Mg2SiO4 polymorphs (olivine, modified spinel and spinel) thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations. Am. Mineral. 1984, 69, 499–512. [Google Scholar]
- Xu, K.D.; Jiang, G.C.; Huang, S.P.; You, J.L. A study on the bonding structure of CaO-SiO2 slag by means of molecular dynamics simulation. Sci. China Ser. E Technol. Sci. 1999, 42, 77–82. [Google Scholar] [CrossRef]
- Burns, R.G. Mineralogical Applications of Crystal Field Theory; Cambridge at the University Press: Cambridge, UK, 1970. [Google Scholar]
- Hofmeister, A.M.; Rossman, G.R. Color in feldspars. Rev. Mineral. 1983, 2, 271–280. [Google Scholar]
- Krzemnicki, M.S. Red and green labradorite feldspar from Congo. J. Gemmol. 2004, 29, 15–23. [Google Scholar] [CrossRef]
- Hofmeister, A.M.; Rossman, G.R. Exsolution of metallic copper from Lake Country labradorite. Geology 1985, 13, 644–647. [Google Scholar] [CrossRef]
- Chen, Z. Discussion on the Color Genesis of ‘Tibet Red Feldspar’; China University of Geosciences: Wuhan, China, 2014. [Google Scholar]
- Quinn, E.P.; Muhlmeister, S. Albitic “moonstone” from the Morogoto region, Tanzania. Gems Gemol. 2005, 41, 60–61. [Google Scholar]
- Ma, Y.; He, J.; Aziguli, R.; Bahadeer, R.; Aierken, S. Photoluminescence of Sinthetic Scapolite Na4Ca4Al6Si9O24Phosphors Activated with Ce3+ and Tb3+ and Energy Transfer from Ce3+ to Tb3+. Spectrosc. Spectr. Anal. 2015, 11, 3241–3246. [Google Scholar]
Sample Number | Color | Luster | Transparency | Specific Gravity | Refractive Index | Birefringence |
---|---|---|---|---|---|---|
cl-1 | Colorless | Vitreous luster | Opaque | 2.65 | 1.543–1.564 | 0.021 |
cl-2 | Colorless | Vitreous luster | Opaque | 2.64 | 1.548–1.562 | 0.014 |
cl-3 | Colorless | Vitreous luster | Opaque | 2.64 | 1.545–1.561 | 0.016 |
y-1 | Yellow | Vitreous luster | Opaque | 2.65 | 1.535–1.562 | 0.027 |
y-2 | Yellow | Vitreous luster | Opaque | 2.65 | 1.546–1.560 | 0.014 |
y-3 | Yellow | Vitreous luster | Opaque | 2.64 | 1.543–1.558 | 0.015 |
y-4 | Yellow | Vitreous luster | Opaque | 2.64 | 1.543–1.562 | 0.019 |
y-7 | Yellow | Vitreous luster | Opaque | 2.63 | 1.545–1.560 | 0.015 |
y-9 | Yellow | Vitreous luster | Opaque | 2.64 | 1.545–1.561 | 0.016 |
y-10 | Yellow | Vitreous luster | Opaque | 2.65 | 1.545–1.561 | 0.016 |
M-O Lattice Vibration | Si-O-Si Bending Vibration | Si-Obr Symmetric Bending Vibrations | AlⅣ-Onb Symmetric Stretching Vibrations | Si -Onb Symmetric Stretching Vibrations | |
---|---|---|---|---|---|
Raman characteristic peak/cm−1 | 108 cm−1, 162 cm−1 263 cm−1, 300 cm−1 336 cm−1, 360 cm−1 | 459 cm−1 | 537 cm−1 | 773 cm−1 | 990 cm−1 1110 cm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, Y.; Guo, Q.; Zhang, S.; Liao, L. Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites. Crystals 2023, 13, 462. https://doi.org/10.3390/cryst13030462
Rao Y, Guo Q, Zhang S, Liao L. Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites. Crystals. 2023; 13(3):462. https://doi.org/10.3390/cryst13030462
Chicago/Turabian StyleRao, Yinghua, Qingfeng Guo, Sixue Zhang, and Libing Liao. 2023. "Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites" Crystals 13, no. 3: 462. https://doi.org/10.3390/cryst13030462
APA StyleRao, Y., Guo, Q., Zhang, S., & Liao, L. (2023). Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites. Crystals, 13(3), 462. https://doi.org/10.3390/cryst13030462