Growth of Germanium Thin Films on Sapphire Using Molecular Beam Epitaxy
Abstract
1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marpaung, D.; Yao, J.; Capmany, J. Integrated microwave photonics. Nat. Photonics 2019, 13, 80–90. [Google Scholar] [CrossRef]
- Olorunsola, O.; Said, A.; Ojo, S.; Abernathy, G.; Saha, S.; Wangila, E.; Grant, J.; Stanchu, H.; Acharya, S.; Du, W.; et al. Enhanced carrier collection efficiency of GeSn single quantum well towards all-group-IV photonics applications. J. Phys. D Appl. Phys 2022, 55, 305101. [Google Scholar] [CrossRef]
- Olorunsola, O.; Said, A.; Ojo, S.; Stanchu, H.; Abernathy, G.; Amoah, S.; Saha, S.; Wangila, E.; Grant, J.; Acharya, S.; et al. SiGeSn quantum well for photonics integrated circuits on Si photonics platform: A review. J. Phys. D Appl. Phys. 2022, 55, 443001. [Google Scholar] [CrossRef]
- Olorunsola, O.; Stanchu, H.; Ojo, S.; Wangila, E.; Said, A.; Zamani-Alavijeh, M.; Salamo, G.; Yu, S. Optical and structural properties of GeSn/SiGeSn multiple quantum wells for infrared optoelectronics. J. Cryst. Growth 2022, 588, 126675. [Google Scholar] [CrossRef]
- Mingchu, T.; Siming, C.; Jiang, W.; Qi, J.; Vitaliy, G.D.; Mourad, B.; Yuriy, I.M.; Gregory, J.S.; Alwyn, S.; Huiyun, L. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express 2011, 19, 11381–11386. [Google Scholar] [CrossRef]
- Du, W.; Ghetmiri, S.A.; Margetis, J.; Al-Kabi, S.; Zhou, Y.; Liu, J.; Sun, G.; Soref, R.A.; Tolle, J.; Li, B.; et al. Investigation of optical transitions in a SiGeSn/GeSn/SiGeSn single quantum well structure. J. Appl. Phys. 2017, 122, 123102. [Google Scholar] [CrossRef]
- Takuro, F.; Tomonari, S.; Koji, T.; Koichi, H.; Takaaki, K.; Shinji, M. Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon. IET Optoelectron. 2015, 9, 151–157. [Google Scholar] [CrossRef]
- Kim, Y.M.; Dahlstrom, M.; Lee, S.; Rodwell, A.J.W.; Gossard, A.C. High-performance InP/In/sub 0.53/Ga/sub 0.47/As/InP double HBTs on GaAs substrates. IEEE 2002, 23, 297–299. [Google Scholar] [CrossRef]
- Billah, M.R.; Blaicher, M.; Hoose, T.; Dietrich, P.I.; Marin-Palomo, P.; Lindenmann, N.; Nesic, A.; Hofmann, A.; Troppenz, U.; Moehrle, M.; et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 2018, 5, 876–883. [Google Scholar] [CrossRef]
- Wangila, E.; Saha, S.K.; Kumar, R.; Kuchuk, A.; Gunder, C.; Amoah, S.; Khiangte, K.R.; Chen, Z.; Yu, S.Q.; Salamo, G.J. Single crystalline Ge thin film growth on c-plane sapphire substrates by molecular beam epitaxy (MBE). CrystEngComm 2022, 24, 4372–4380. [Google Scholar] [CrossRef]
- Al-Kab, S.; Ghetmiri, S.A.; Margetis, J.; Pham, T.; Zhou, Y.; Dou, W.; Collier, B.; Quinde, R.; Du, W.; Mosleh, A.; et al. An optically pumped 2.5 μm GeSn laser on Si operating at 110 K. Appl. Phys. Lett. 2016, 109, 171105. [Google Scholar] [CrossRef]
- Margetis, J.; Al-Kabi, S.; Du, W.; Dou, W.; Zhou, Y.; Pham, T.; Grant, P.; Ghetmiri, S.; Mosleh, A.; Li, B.; et al. Si-Based GeSn Lasers with Wavelength Coverage of 2–3 μm and Operating Temperatures up to 180 K. ACS 2017, 5, 827–833. [Google Scholar] [CrossRef]
- Schwank, J.R.; Ferlet-Cavrois, V.; Shaneyfelt, M.R.; Paillet, P.; Dodd, P.E. Radiation Effects in SOI Technologie. IEEE 2003, 50, 522–538. [Google Scholar]
- Kashfia, H.; Paul, B. A radiation hard configuration memory with auto-scrubbing. In Proceedings of the IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia, 7–10 November 2011; IEEE: New York, NY, USA. [Google Scholar] [CrossRef]
- Ashim, D.; Ali, R.; Frédéric, P.; Ananth, Z.S.; Stéphane, C.; Nicolas, L.T.; Roel, B. Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides. Opt. Express 2015, 23, 27391–27404. [Google Scholar]
- O’Mahony, D.; Hossain, M.N.; John, J.; Emanuele, P.; O’Riordan, A.; Brendan, R.; Brian, C. High index contrast optical platform using gallium phosphide on sapphire: An alternative to SOI? SPIE 2012, 8431, 84311H-8. [Google Scholar]
- Tom, B.; Alexander, S.; Rob, I.; Andrew, S.; Boyan Penkov William, A.; Michael, H. Silicon-on-sapphire integrated waveguides for the mid-infrared. Opt. Express 2010, 18, 12127–12135. [Google Scholar] [CrossRef]
- Humphreys, T.P.; Miner, C.J.; Posthill, J.B.; Das, K.; Summerville, M.K.; Nemanich, R.J.; Sukow, C.A.; Parikh, N.R. Heteroepitaxial growth and characterization of GaAs on silicon-on-sapphire and sapphire substrates. Appl. Phys. Lett. 1989, 54, 1687–1689. [Google Scholar] [CrossRef]
- Xia, C.; Milosevic, S.M.M.; Scott, R.; Thalía, D.B.; Ke, L.; David, J.T.; Frederic, G.; Graham, T.R. The emergence of Silicon Photonics as a Flexible Technology Platform. IEEE 2018, 106, 2101–2116. [Google Scholar]
- Saha, S.K.; Kumar, R.; Kuchuk, A.; Alavijeh, M.Z.; Maidaniuk, Y.; Mazur, Y.I.; Yu, S.; Salamo, G.J. Crystalline GaAs Thin Film Growth on a c-Plane Sapphire Substrate. Cryst. Growth Des. 2019, 19, 5088–5096. [Google Scholar] [CrossRef]
- Littlejohn, A.J.; Xiang, Y.; Rauch, E.; Lu, T.-M.; Wang, G.-C. van der Waals epitaxy of Ge films on mica. J. Appl. Phys. 2017, 122, 185305. [Google Scholar] [CrossRef]
- Khiangte, K.R.; Rathore, J.S.; Schmidt, J.; Osten, H.J.; Laha, A.; Mahapatra, S. Wafer-scale all-epitaxial GeSn-on-insulator on Si(1 1 1) by molecular beam epitaxy. J. Appl. Phys. 2018, 51, 32LT01. [Google Scholar] [CrossRef]
- Ichimiya, A.; Cohen, P.I. Reflection HighEnergy ElectronDiffraction; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; Volume 22, pp. 2769–2770. [Google Scholar] [CrossRef]
- Kim, H.J.; Duzik, A.; Hyung, B.; Choi, S.H.; Zhao, Y. High-Electron-Mobility SiGe on Sapphire Substrate for Fast Chipsets. ProQuest Cent. 2008, 2015, 785415. [Google Scholar] [CrossRef][Green Version]
- Moram, M.A.; Vickers, M.E. X-ray diffraction of III-nitrides. Rep. Prog. Phys. 2009, 72, 036502. [Google Scholar] [CrossRef]
- Kim, H.J.; Duzik, A.; Choi, S.H. Lattice-alignment mechanism of SiGe on Sapphire. Acta Mater. 2018, 145, 1–7. [Google Scholar] [CrossRef]
- Poulat, S.; Ernst, F. Epitaxy of Ge on sapphire. Mater. Sci. Eng. A 2001, 323, 9–16. [Google Scholar] [CrossRef]
- Godbey, D.J.; Twigg, M.E. The nucleation and growth of germanium on (1102) sapphire deposited by molecular beam epitaxy. J. Appl. Phys. 1991, 69, 4216–4221. [Google Scholar] [CrossRef]
- Joshua, G.; Abernathy, G.; Olorunsola, O.; Ojo, S.; Amoah, S.; Wanglia, E.; Saha, S.; Sabbar, A.; Du, W.; Alher, M.; et al. Growth of Pseudomorphic GeSn at Low Pressure with Sn Composition of 16.7%. Materials 2021, 14, 7637. [Google Scholar] [CrossRef]
- Kartopua, G.; Bayliss, S.C. Simultaneous micro-Raman and photoluminescence study of spark-processed germanium: Report on the origin of the orange photoluminescence emission band. Appl. Phys. Lett. 2004, 95, 3466–3472. [Google Scholar] [CrossRef]
- Krivyakin, G.K.; Volodin, V.A.; Kamaev, G.N.; Popov, A.A. Effect of Interfaces and Thickness on the Crystallization Kinetics of Amorphous Germanium Films. Semiconductors 2020, 54, 754–758. [Google Scholar] [CrossRef]
- Ghosh, A.; Clavel, M.B.; Nguyen, P.D.; Meeker, M.A.; Khodaparast, G.A.; Bodnar, R.J.; Hudait, M.K. Growth, structural, and electrical properties of germanium-on-silicon heterostructure by molecular beam epitaxy. AIP Adv. 2017, 7, 095214. [Google Scholar] [CrossRef]
- Maity, G.; Yadav, R.P.; Singhal, R.; Sulania, I.; Mitta, A.K.; Chaudhary, D.K. Thickness effect on scaling law and surface properties of nano-dimensional SnTe thin films. J. Appl. Phys. 2021, 130, 175306. [Google Scholar] [CrossRef]
- Tramposch, R.F. Epitaxial Films of Germanium Deposited on Sapphire via Chemical Vapor Transport. J. Electrochem. Soc. 1969, 116, 654. [Google Scholar] [CrossRef]
Sample/ Properties | S1 | S2 | S3 | S4 | S5 | S6 | S7 |
---|---|---|---|---|---|---|---|
Strain | 0.0007 | 0.0019 | 0.0017 | 0.0003 | 0.0004 | 0.0003 | 0.0001 |
Twinning (%) | 42.1 | 22.0 | 48.5 | 3.47 | 20.1 | 24.9 | 16.3 |
Roughness (nm) | 5.5 | 2.2 | 2.1 | 4.0 | 6.5 | 12.0 | 9.8 |
Omega linewidth (deg) | 0.35 | 0.45 | 0.54 | 0.55 | 0.56 | 0.35 | 0.29 |
Domain size (nm) | 290 | 440 | 340 | 470 | 500 | 780 | 990 |
Correlation length (nm) | 250 | 50 | 49 | 150 | 330 | 620 | 580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangila, E.; Lytvyn, P.; Stanchu, H.; Gunder, C.; de Oliveira, F.M.; Saha, S.; Das, S.; Eldose, N.; Li, C.; Zamani-Alavijeh, M.; et al. Growth of Germanium Thin Films on Sapphire Using Molecular Beam Epitaxy. Crystals 2023, 13, 1557. https://doi.org/10.3390/cryst13111557
Wangila E, Lytvyn P, Stanchu H, Gunder C, de Oliveira FM, Saha S, Das S, Eldose N, Li C, Zamani-Alavijeh M, et al. Growth of Germanium Thin Films on Sapphire Using Molecular Beam Epitaxy. Crystals. 2023; 13(11):1557. https://doi.org/10.3390/cryst13111557
Chicago/Turabian StyleWangila, Emmanuel, Peter Lytvyn, Hryhorii Stanchu, Calbi Gunder, Fernando Maia de Oliveira, Samir Saha, Subhashis Das, Nirosh Eldose, Chen Li, Mohammad Zamani-Alavijeh, and et al. 2023. "Growth of Germanium Thin Films on Sapphire Using Molecular Beam Epitaxy" Crystals 13, no. 11: 1557. https://doi.org/10.3390/cryst13111557
APA StyleWangila, E., Lytvyn, P., Stanchu, H., Gunder, C., de Oliveira, F. M., Saha, S., Das, S., Eldose, N., Li, C., Zamani-Alavijeh, M., Benamara, M., Mazur, Y. I., Yu, S.-Q., & Salamo, G. J. (2023). Growth of Germanium Thin Films on Sapphire Using Molecular Beam Epitaxy. Crystals, 13(11), 1557. https://doi.org/10.3390/cryst13111557