Theoretical Investigation of Anhydrofusarubin: Structural and Optical Properties
Abstract
1. Introduction
2. Methodological Part
3. Results and Discussion
3.1. Structural Peculiarities
3.1.1. Conformational Enantiomers of Anhydrofusarubin
3.1.2. Tautomerism in Anhydrofusarubin
3.2. IR absorbance Spectroscopy
3.3. UV-Vis Absorbance Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toghueo, R.M.K. Bioprospecting Endophytic Fungi from Fusarium Genus as Sources of Bioactive Metabolites. Mycology 2020, 11, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.M.; Mahmoud, B.K.; Millán-Aguiñaga, N.; Abdelmohsen, U.R.; Fouad, M.A. The Endophytic Fusarium Strains: A Treasure Trove of Natural Products. RSC Adv. 2023, 13, 1339–1369. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.; Mandal, A.; Saha, S.; Prabhakaran, P.; Walia, S. Fungicidal Activity and Molecular Modeling of Fusarubin Analogues from Fusarium oxysporum. Toxicol. Environ. Chem. 2020, 102, 78–91. [Google Scholar] [CrossRef]
- Daniel, J.J.; Zabot, G.L.; Tres, M.V.; Harakava, R.; Kuhn, R.C.; Mazutti, M.A. Fusarium Fujikuroi: A Novel Source of Metabolites with Herbicidal Activity. Biocatal. Agric. Biotechnol. 2018, 14, 314–320. [Google Scholar] [CrossRef]
- Spanic, V.; Katanic, Z.; Sulyok, M.; Krska, R.; Puskas, K.; Vida, G.; Drezner, G.; Šarkanj, B. Multiple Fungal Metabolites Including Mycotoxins in Naturally Infected and Fusarium-Inoculated Wheat Samples. Microorganisms 2020, 8, 578. [Google Scholar] [CrossRef]
- Cuperlovic-Culf, M.; Wang, L.; Forseille, L.; Boyle, K.; Merkley, N.; Burton, I.; Fobert, P.R. Metabolic Biomarker Panels of Response to Fusarium Head Blight Infection in Different Wheat Varieties. PLoS ONE 2016, 11, e0153642. [Google Scholar] [CrossRef]
- Shinha, K.K.; Bhatnagar, D. Mycotoxins in Agriculture and Food Safety; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Pankin, D.; Povolotckaia, A.; Kalinichev, A.; Povolotskiy, A.; Borisov, E.; Moskovskiy, M.; Gulyaev, A.; Lavrov, A.; Izmailov, A. Complex Spectroscopic Study for Fusarium Genus Fungi Infection Diagnostics of “Zalp” Cultivar Oat. Agronomy 2021, 11, 2402. [Google Scholar] [CrossRef]
- Gámiz-Gracia, L.; García-Campaña, A.M.; Arroyo-Manzanares, N. Application of LC–MS/MS in the Mycotoxins Studies. Toxins 2020, 12, 272. [Google Scholar] [CrossRef]
- Pankin, D.; Smirnov, M.; Povolotckaia, A.; Povolotskiy, A.; Borisov, E.; Moskovskiy, M.; Gulyaev, A.; Gerasimenko, S.; Aksenov, A.; Litvinov, M.; et al. DFT Modelling of Molecular Structure, Vibrational and UV-Vis Absorption Spectra of T-2 Toxin and 3-Deacetylcalonectrin. Materials 2022, 15, 649. [Google Scholar] [CrossRef]
- Makino, T.; Kato, K.; Lyozumi, H.; Honzawa, H.; Tachiiri, Y.; Hiramatsu, M. Ultraweak Luminescence Generated by Sweet Potato and Fusarium oxysporum Interactions Associated with a Defense Response. Photochem. Photobiol. 1996, 64, 953–956. [Google Scholar] [CrossRef]
- Moskovskiy, M.N.; Belyakov, M.V.; Dorokhov, A.S.; Boyko, A.A.; Belousov, S.V.; Noy, O.V.; Gulyaev, A.A.; Akulov, S.I.; Povolotskaya, A.; Efremenkov, I.Y. Design of Device for Optical Luminescent Diagnostic of the Seeds Infected by Fusarium. Agriculture 2023, 13, 619. [Google Scholar] [CrossRef]
- Pankin, D.; Povolotckaia, A.; Borisov, E.; Povolotskiy, A.; Borzenko, S.; Gulyaev, A.; Gerasimenko, S.; Dorochov, A.; Khamuev, V.; Moskovskiy, M. Investigation of Spectroscopic Peculiarities of Ergot-Infected Winter Wheat Grains. Foods 2023, 12, 3426. [Google Scholar] [CrossRef] [PubMed]
- Dorokhov, A.; Moskovskiy, M.; Belyakov, M.; Lavrov, A.; Khamuev, V. Detection of Fusarium Infected Seeds of Cereal Plants by the Fluorescence Method. PLoS ONE 2022, 17, e0267912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, X.; Wen, K.; Li, C.; Mujtaba Mari, G.; Jiang, H.; Shi, W.; Shen, J.; Wang, Z. Multiplex Lateral Flow Immunoassays Based on Amorphous Carbon Nanoparticles for Detecting Three Fusarium Mycotoxins in Maize. J. Agric. Food Chem. 2017, 65, 8063–8071. [Google Scholar] [CrossRef]
- Pillay, A.; Rousseau, A.L.; Fernandes, M.A.; de Koning, C.B. The Synthesis of the Pyranonaphthoquinones Dehydroherbarin and Anhydrofusarubin Using Wacker Oxidation Methodology as a Key Step and Other Unexpected Oxidation Reactions with Ceric Ammonium Nitrate and Salcomine. Org. Biomol. Chem. 2012, 10, 7809. [Google Scholar] [CrossRef]
- Wu, Q.; Patocka, J.; Nepovimova, E.; Kuca, K. A Review on the Synthesis and Bioactivity Aspects of Beauvericin, a Fusarium Mycotoxin. Front. Pharmacol. 2018, 9, 1338. [Google Scholar] [CrossRef]
- Adeleke, B.; Babalola, O. Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review. J. Fungi 2021, 7, 147. [Google Scholar] [CrossRef]
- Tatum, J.H.; Baker, R.A. Naphthoquinones Produced by Fusarium Solani Isolated from Citrus. Phytochemistry 1983, 22, 543–547. [Google Scholar] [CrossRef]
- Shao, C.-L.; Wang, C.-Y.; Deng, D.-S.; She, Z.-G.; Gu, Y.-C.; Lin, Y.-C. Crystal Structure of a Marine Natural Compound, Anhydrofusarubin. Chin. J. Struct. Chem. 2008, 27, 824–828. [Google Scholar]
- Tatum, J.H.; Baker, R.A.; Berry, R.E. Metabolites of Fusarium Solani. Phytochemistry 1989, 28, 283–284. [Google Scholar] [CrossRef]
- Tadpetch, K.; Vijitphan, P. Synthesis of 8-0-Methylfusarubin, 8-0-Methylanhydrofusarubin, Fusarubin and Anhydrofusarubin. Doctoral Dissertation, Prince of Songkla University, Hat Yai, Thailand, 2019. [Google Scholar]
- Suzuki, M.; Nishida, N.; Ishihara, A.; Nakajima, H. New 3-O-Alkyl-4a,10a-dihydrofusarubins Produced by Fusarium sp. Mj-2. Biosci. Biotechnol. Biochem. 2013, 77, 271–275. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Khan, M.I.H.; Sohrab, M.H.; Rony, S.R.; Tareq, F.S.; Hasan, C.M.; Mazid, M.A. Cytotoxic and Antibacterial Naphthoquinones from an Endophytic Fungus, Cladosporium sp. Toxicol. Rep. 2016, 3, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, J. Dictionary of Natural Products, Supplement 1; Chapman & Hall: London, UK, 1994. [Google Scholar]
- Khan, N.; Afroz, F.; Begum, M.N.; Roy Rony, S.; Sharmin, S.; Moni, F.; Mahmood Hasan, C.; Shaha, K.; Sohrab, M.H. Endophytic Fusarium Solani: A Rich Source of Cytotoxic and Antimicrobial Napthaquinone and Aza-Anthraquinone Derivatives. Toxicol. Rep. 2018, 5, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Adorisio, S.; Fierabracci, A.; Muscari, I.; Liberati, A.; Cannarile, L.; Thuy, T.; Sung, T.; Sohrab, H.; Hasan, C.; Ayroldi, E.; et al. Fusarubin and Anhydrofusarubin Isolated from A Cladosporium Species Inhibit Cell Growth in Human Cancer Cell Lines. Toxins 2019, 11, 503. [Google Scholar] [CrossRef]
- Ammar, M.S.; Gerber, N.N.; Mcdaniel, L.E. New Antibiotic Pigments Related to Fusarubin from Fusarium Solani (MART.) SACC. I. Fermentation, Islation, and Antimicrobial Activities. J. Antibiot. 1979, 32, 679–684. [Google Scholar] [CrossRef]
- Vijitphan, P.; Rukachaisirikul, V.; Muanprasat, C.; Iawsipo, P.; Panprasert, J.; Tadpetch, K. Unified Synthesis and Cytotoxic Activity of 8-O-Methylfusarubin and Its Analogues. Org. Biomol. Chem. 2019, 17, 7078–7087. [Google Scholar] [CrossRef]
- Hasan, S.; Ansari, M.; Ahmad, A.; Mishra, M. Major Bioactive Metabolites from Marine Fungi: A Review. Bioinformation 2015, 11, 176–181. [Google Scholar] [CrossRef]
- Gerber, N.N.; Ammar, M.S. New Antibiotic Pigments Related to Fusarubin from Fusarium Solani (MART.) SACC. II. Structure Elucidations. J. Antibiot. 1979, 32, 685–688. [Google Scholar] [CrossRef]
- De Gussem, K. Mycotechnology: Present Status & Future Prospects; I K International Publishing: Delhi, India, 2007; pp. 288–301. [Google Scholar]
- Volkov, V.V.; Perry, C.C. Fungal Pigments on Paper: Raman and Quantum Chemistry Studies of Alternaria Sp. Dyes Pigments 2021, 195, 109719. [Google Scholar] [CrossRef]
- Pankin, D.; Povolotckaia, A.; Borisov, E.; Belyakov, M.; Borzenko, S.; Gulyaev, A.; Moskovskiy, M. Theoretical Modelling of Structure, Vibrational and UV–Vis Absorbance Spectra of Rubrofusarin Molecule. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 293, 122469. [Google Scholar] [CrossRef]
- Zięba, S.; Piotrowska, A.; Mizera, A.; Ławniczak, P.; Markiewicz, K.H.; Gzella, A.; Dubis, A.T.; Łapiński, A. Spectroscopic and Structural Study of a New Conducting Pyrazolium Salt. Molecules 2021, 26, 4657. [Google Scholar] [CrossRef]
- Sutradhar, D.; Chandra, A.K.; Zeegers-Huyskens, T. Theoretical Study of the Interaction of Fluorinated Dimethyl Ethers and the ClF and HF Molecules. Comparison between Halogen and Hydrogen Bonds. Int. J. Quantum Chem. 2016, 116, 670–680. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01. 2010. Available online: https://www.scienceopen.com/document?vid=45b5a7ba-f6ee-40ce-b346-7407f99a540d (accessed on 25 October 2023).
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First Principles Methods Using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type Density Functional Constructed with a Long-range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef]
- Cambridge Crystallographic Data Centre. Available online: https://www.ccdc.cam.ac.uk/Structures/Search?Compound=anhydrofusarubin&DatabaseToSearch=Published (accessed on 25 October 2023).
- Caballero, B.; Trugo, L.; Finglas, P. (Eds.) Encyclopedia of Food Sciences and Nutrition; Elsevier Science B.V.: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Mayo, D.W.; Miller, F.A.; Hannah, R.W. (Eds.) Course Notes on the Interpretation of Infrared and Raman Spectra; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; ISBN 9780471690085. [Google Scholar]
- Paul, S.O.; Schutte, C.J.H.; Hendra, P.J. The Fourier Transform Raman and Infrared Spectra of Naphthazarin. Spectrochim. Acta Part A Mol. Spectrosc. 1990, 46, 323–329. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Thrane, U. Standardized High-Performance Liquid Chromatography of 182 Mycotoxins and Other Fungal Metabolites Based on Alkylphenone Retention Indices and UV—VIS Spectra (Diodearray Detection). J. Chromatogr. A 1987, 404, 195–214. [Google Scholar] [CrossRef]
- Onda, K.; Yamochi, H.; Koshihara, S. Diverse Photoinduced Dynamics in an Organic Charge-Transfer Complex Having Strong Electron–Phonon Interactions. Acc. Chem. Res. 2014, 47, 3494–3503. [Google Scholar] [CrossRef]
- Parsaee, Z.; Mohammadi, K.; Ghahramaninezhad, M.; Hosseinzadeh, B. A Novel Nano-Sized Binuclear Nickel(II) Schiff Base Complex as a Precursor for NiO Nanoparticles: Synthesis, Characterization, DFT Study and Antibacterial Activity. New J. Chem. 2016, 40, 10569–10583. [Google Scholar] [CrossRef]
Theoretical Geometry for Single Molecule | XRD Data from [20,43] | Theoretical Geometry for Molecules in Crystal Asymmetrical Unit | |||||
---|---|---|---|---|---|---|---|
Bond, Å | 1st Approach | 2nd Approach | Molecule 1 | Molecule 2 | GGA-PBE-G6 Molecule 2 | GGA-PBE-G6 Molecule 1 | |
Ring I | C7-C6 | 1.458 | 1.461 | 1.448 | 1.443 | 1.451 | 1.445 |
C6-C5 | 1.455 | 1.460 | 1.445 | 1.451 | 1.450 | 1.449 | |
C5-C4 | 1.420 | 1.423 | 1.421 | 1.421 | 1.419 | 1.421 | |
C4-C9 | 1.454 | 1.458 | 1.443 | 1.446 | 1.445 | 1.447 | |
C9-C8 | 1.498 | 1.502 | 1.492 | 1.492 | 1.487 | 1.491 | |
C8-C7 | 1.352 | 1.348 | 1.334 | 1.334 | 1.369 | 1.371 | |
C6-O21 | 1.248 | 1.237 | 1.256 | 1.256 | 1.275 | 1.278 | |
C9-O23 | 1.236 | 1.226 | 1.239 | 1.239 | 1.260 | 1.259 | |
C8-O16 | 1.335 | 1.326 | 1.339 | 1.339 | 1.343 | 1.339 | |
O16-C17 | 1.426 | 1.418 | 1.439 | 1.438 | 1.443 | 1.446 | |
Ring II | C5-C12 | 1.401 | 1.393 | 1.393 | 1.389 | 1.414 | 1.415 |
C12-C1 | 1.407 | 1.409 | 1.402 | 1.407 | 1.413 | 1.412 | |
C1-C2 | 1.386 | 1.379 | 1.378 | 1.378 | 1.397 | 1.394 | |
C2-C14 | 1.424 | 1.422 | 1.418 | 1.418 | 1.433 | 1.432 | |
C14-C4 | 1.401 | 1.394 | 1.394 | 1.394 | 1.413 | 1.411 | |
C12-O13 | 1.339 | 1.335 | 1.344 | 1.344 | 1.341 | 1.341 | |
C14-O15 | 1.336 | 1.333 | 1.334 | 1.334 | 1.334 | 1.334 | |
Ring III | C1-C27 | 1.501 | 1.501 | 1.498 | 1.492 | 1.504 | 1.506 |
C27-O11 | 1.441 | 1.428 | 1.430 | 1.430 | 1.451 | 1.456 | |
O11-C3 | 1.357 | 1.352 | 1.351 | 1.351 | 1.359 | 1.355 | |
C3-C25 | 1.348 | 1.346 | 1.326 | 1.326 | 1.359 | 1.359 | |
C25-C2 | 1.446 | 1.450 | 1.443 | 1.443 | 1.438 | 1.437 | |
C3-C30 | 1.491 | 1.490 | 1.489 | 1.488 | 1.485 | 1.487 | |
Angle, o | |||||||
Ring I | C7-C6-C5 | 118.5 | 118.7 | 119.0 | 119.2 | 118.9 | 119.0 |
C6-C5-C4 | 120.4 | 120.3 | 119.9 | 119.9 | 120.4 | 120.3 | |
C5-C4-C9 | 120.7 | 120.5 | 120.5 | 120.2 | 120.6 | 120.9 | |
C4-C9-C8 | 117.4 | 117.5 | 117.5 | 117.5 | 117.8 | 117.1 | |
C9-C8-C7 | 121.2 | 121.3 | 121.6 | 121.6 | 121.2 | 121.5 | |
C7-C6-O21 | 119.7 | 119.7 | 119.8 | 120.0 | 120.6 | 120.5 | |
C8-C9-O23 | 119.6 | 119.6 | 119.6 | 119.6 | 120.5 | 120.6 | |
C9-C8-O16 | 112.2 | 112.1 | 111.8 | 111.8 | 112.7 | 112.7 | |
C8-C7-H10 | 122.7 | 122.8 | 119.1 | 119.3 | 121.6 | 121.8 | |
C8-O16-C17 | 118.0 | 118.0 | 117.1 | 117.2 | 116.9 | 116.6 | |
Ring II | C5-C12-C1 | 119.6 | 119.4 | 120.1 | 120.5 | 119.9 | 120.1 |
C12-C1-C2 | 121.4 | 121.4 | 121.1 | 120.4 | 121.2 | 120.6 | |
C1-C2-C14 | 119.5 | 119.7 | 120.0 | 120.0 | 119.1 | 119.8 | |
C2-C14-C4 | 119.7 | 119.5 | 119.8 | 119.8 | 119.8 | 119.9 | |
C14-C4-C5 | 120.2 | 120.3 | 120.1 | 120.0 | 120.3 | 119.8 | |
C4-C14-C15 | 122.4 | 123.3 | 123.7 | 123.7 | 121.4 | 122.2 | |
C14-C15-H24 | 106.2 | 107.5 | 104.8 | 103.1 | 104.8 | 105.9 | |
C5-C12-O13 | 122.0 | 123.0 | 121.8 | 122.0 | 120.7 | 120.7 | |
C12-O13-H22 | 105.5 | 106.8 | 101.8 | 100.9 | 103.6 | 103.3 | |
Ring III | C1-C27-O11 | 112.3 | 111.9 | 114.2 | 114.1 | 113.6 | 114.0 |
C27-O11-C3 | 116.4 | 116.1 | 118.4 | 118.0 | 117.8 | 118.9 | |
O11-C3-C25 | 122.2 | 122.0 | 122.3 | 122.3 | 123.0 | 122.9 | |
C3-C25-C2 | 119.4 | 118.9 | 120.7 | 120.7 | 119.6 | 120.1 | |
C25-C2-C1 | 118.6 | 118.4 | 118.5 | 118.2 | 119.2 | 119.1 | |
C2-C1-C27 | 117.1 | 116.7 | 118.3 | 118.5 | 118.3 | 119.1 | |
C1-C27-H_eq | 111.6 | 111.8 | 108.7 | 108.7 | 112.2 | 112.3 | |
C1-C27-H_ax | 110.3 | 109.8 | 108.7 | 108.7 | 109.9 | 110.3 | |
C3-C25-H26 | 120.2 | 120.4 | 119.8 | 119.7 | 119.9 | 120.2 | |
C25-C3-C30 | 125.7 | 125.7 | 126.2 | 126.1 | 125.5 | 125.2 | |
H29-C27-H28 | 108.5 | 108.7 | 107.6 | 107.6 | 107.5 | 107.6 | |
Dihedral angle, o | |||||||
C12-C1-C27-O11 | 148.7 | 146.9 | 158.7 | −158.4 | −159.1 | 162.5 | |
C1-C27-O11-C3 | 42.7 | 45.5 | 32.6 | −33.8 | −34.3 | 28.6 | |
C27-O11-C3-C25 | −23.7 | −25.3 | −21.2 | 22.3 | 21.4 | −18.6 | |
O11-C3-C25-C2 | −6.2 | −6.6 | −0,1 | 0.5 | 1.3 | −0.9 | |
C3-C25-C2-C14 | −162.4 | −160.9 | −171.1 | 169.6 | 171.1 | −171.3 | |
C3-C25-C2-C1 | 14.5 | 15.6 | 7.6 | −9.7 | −9.0 | 8.5 | |
C27-O11-C3-C33 | 160.1 | 158.4 | 163.0 | −161.3 | −161.9 | 164.3 |
Theoretical Results for GP Single Molecule | Experimental Data | ||||
---|---|---|---|---|---|
[45] | [28] | ||||
Peak number | Oscillator strength | Orbitals with >10% contribution (contribution percent) | Wavelength, nm (energy, eV) | Wavelength, nm | Wavelength, nm |
Peak 1 | 0.2284 | 71–>78 (18%) 73–>78 (49%) | 203 (6.1006) | 215 | |
Peak 2 | 0.1630 | 74–>78 (81%) | 241 (5.1536) | 235 | 237 |
Peak 3 | 0.1579and0.1844 | 74–>77 (29%) 75–>78 (62%) and 75–>77 (87%) | 285 (4.3561) and 298 (4.1562) | 288 | 290 |
Peak 4 | 0.0374 | 73–>76 (85%) | 351 (3.5301) | 345 | |
Peak 5 | 0.1371 | 75–>76 (93%) | 560 (2.2151) | 540 * and 570 | 545 |
Estimated Value | Method 1 |
---|---|
LUMO energy, eV | −3.15 |
HOMO energy, eV | −5.75 |
LUMO-HOMO, eV | 2.60 |
Electron affinity, eV | 3.15 |
Ionization potential, eV | 5.75 |
Chemical hardness, eV | 1.30 |
Electronegativity, eV | 4.45 |
Electrophilicity index | 7.62 |
Chemical softness, eV−1 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pankin, D.; Povolotckaia, A.; Smirnov, M.; Borisov, E.; Gulyaev, A.; Dorochov, A.; Novikov, V.; Kuznetsov, S.; Noy, O.; Belousov, S.; et al. Theoretical Investigation of Anhydrofusarubin: Structural and Optical Properties. Crystals 2023, 13, 1556. https://doi.org/10.3390/cryst13111556
Pankin D, Povolotckaia A, Smirnov M, Borisov E, Gulyaev A, Dorochov A, Novikov V, Kuznetsov S, Noy O, Belousov S, et al. Theoretical Investigation of Anhydrofusarubin: Structural and Optical Properties. Crystals. 2023; 13(11):1556. https://doi.org/10.3390/cryst13111556
Chicago/Turabian StylePankin, Dmitrii, Anastasia Povolotckaia, Mikhail Smirnov, Evgenii Borisov, Anatoly Gulyaev, Alexey Dorochov, Vasiliy Novikov, Sergey Kuznetsov, Oleg Noy, Sergey Belousov, and et al. 2023. "Theoretical Investigation of Anhydrofusarubin: Structural and Optical Properties" Crystals 13, no. 11: 1556. https://doi.org/10.3390/cryst13111556
APA StylePankin, D., Povolotckaia, A., Smirnov, M., Borisov, E., Gulyaev, A., Dorochov, A., Novikov, V., Kuznetsov, S., Noy, O., Belousov, S., & Moskovskiy, M. (2023). Theoretical Investigation of Anhydrofusarubin: Structural and Optical Properties. Crystals, 13(11), 1556. https://doi.org/10.3390/cryst13111556