Evolution of Structure and Properties of Micro-Nano Structure 2507 Duplex Stainless Steel Prepared by Aluminothermic Reduction
Abstract
1. Introduction
2. Experimental
2.1. Material and Processing
2.2. Microstructural and Mechanical Evaluation
3. Results
3.1. Microstructure
3.2. Tensile Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Feng, H.; Zhou, X.Y.; Liu, H.; Song, Z.G. Development and trend of hyper duplex stainless steels. J. Iron Steel Res. 2015, 27, 1–5. [Google Scholar]
- Fan, Y.; Liu, T.; Xin, L.; Han, Y.; Lu, Y.; Shoji, T. Thermal aging behaviors of duplex stainless steels used in nuclear power plant: A review. J. Nucl. Mater. 2021, 544, 152693–152706. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Liang, W.; Han, P.; Wang, H. Effect of Aging on Precipitation Behavior and Pitting Corrosion Resistance of SAF2906 Super Duplex Stainless Steel. J. Mater. Eng. Perform. 2017, 26, 4533–4543. [Google Scholar] [CrossRef]
- George, P.; Wins, K.L.D.; Dhas, D.E.J.; George, P. Machinability, weldability and surface treatment studies of SDSS 2507 material—A review. Mater. Today Proc. 2021, 46, 7682–7687. [Google Scholar] [CrossRef]
- Du, J.-K.; Chao, C.-Y.; Wei, L.-L.; Wang, C.-H.; Chen, J.-H.; Chen, K.-K.; Huang, R.-B. Effects of Ag-Rich Nano-Precipitates on the Antibacterial Properties of 2205 Duplex Stainless Steel. Metals 2021, 11, 23. [Google Scholar] [CrossRef]
- Chen, M.; Liu, H.; Wang, L.; Xu, Z.; Ji, V.; Jiang, C. Residual stress and microstructure evolutions of SAF 2507 duplex stainless steel after shot peening. Appl. Surf. Sci. 2018, 459, 155–163. [Google Scholar] [CrossRef]
- Li, J.; Ma, Z.; Xiao, X.; Zhao, J.; Jiang, L. On the behavior of nitrogen in a low-Ni high-Mn super duplex stainless steel. Mater. Des. 2011, 32, 2199–2205. [Google Scholar] [CrossRef]
- Torres, C.; Johnsen, R.; Iannuzzi, M. Crevice corrosion of solution annealed 25Cr duplex stainless steels: Effect of W on critical temperatures. Corros. Sci. 2021, 178, 109053–109066. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Chen, H.; Xiao, X.; Zhao, J.; Jiang, L. New Economical 19Cr Duplex Stainless Steels. Met. Mater. Trans. A 2012, 43, 428–436. [Google Scholar] [CrossRef]
- Llorca-Isern, N.; López-Luque, H.; López-Jiménez, I.; Biezma, M.V. Identification of sigma and chi phases in duplex stainless steels. Mater. Charact. 2016, 112, 20–29. [Google Scholar] [CrossRef]
- He, L. Microstructure Evolution and Corrosion Behavior of Duplex Stainless Steel During Isothermal Aged at 650 °C. Int. J. Electrochem. Sci. 2016, 11, 8046–8056. [Google Scholar] [CrossRef]
- Li, Z.; Wei, F.; La, P.; Wang, H.; Wei, Y. Enhancing Ductility of 1045 Nanoeutectic Steel Prepared by Aluminothermic Reaction through Annealing at 873K. Adv. Mater. Sci. Eng. 2017, 2017, 5392073. [Google Scholar] [CrossRef]
- Mao, Y.; Zheng, Y.; Shi, Y.; Zhu, M.; Saitejin; Liu, S.; Lin, X.; La, P. Effect of rolling deformation on microstructure and mechanical properties of 2205 duplex stainless steel with micro-nano structure. Mod. Phys. Lett. B 2020, 34, 2050269–2050280. [Google Scholar] [CrossRef]
- Zhang, W.; Zou, D.N.; Fan, G.W.; Li, J. Influence of Aging Time on Sigma Phase Precipitation in SAF2507 Super-Duplex Stainless Steel. Mater. Sci. Forum 2009, 620–622, 355–358. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Li, J.; Li, D.; Li, N. Pitting Corrosion of Thermally Aged Duplex Stainless Steels at Different Temperature for Long Time. Mater. Res. 2019, 22, e20180663. [Google Scholar] [CrossRef]
- Lin, P.-C.; Tsai, Y.-T.; Gan, N.-H.; Yang, J.-R.; Wang, S.-H.; Chang, H.-Y.; Lin, T.-R.; Chiu, P.-K. Characteristics of Flakes Stacked Cr2N with Many Domains in Super Duplex Stainless Steel. Crystals 2020, 10, 965. [Google Scholar] [CrossRef]
- Mészáros, I.; Bögre, B.; Szabó, P.J. Magnetic and Thermoelectric Detection of Sigma Phase in 2507 Duplex Stainless Steel. Crystals 2022, 12, 527. [Google Scholar] [CrossRef]
- Berecz, T.; Fazikas, É.; Fábián, E.R.; Jenei, P.; Marióti, J.E. Investigation of Thermally Induced Deterioration Processes in Cold Worked SAF 2507 Type Duplex Stainless Steel by DTA. Crystals 2020, 10, 937. [Google Scholar] [CrossRef]
- Chen, M.; Liu, H.; Wang, L.; Wang, C.; Zhu, K.; Xu, Z.; Jiang, C.; Ji, V. Evaluation of the residual stress and microstructure character in SAF 2507 duplex stainless steel after multiple shot peening process. Surf. Coat. Technol. 2018, 344, 132–140. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, J.; Gao, Y. Achieving high strength and high ductility in 304 stainless steel through bi-modal microstructure prepared by post-ECAP annealing. Mater. Sci. Eng. A 2017, 680, 426–432. [Google Scholar] [CrossRef]
- Kb, A.; Jm, B.; Mf, B.; Kec, D.; Zhc, D. Effect of high-pressure torsion on grain refinement, strength enhancement and uniform ductility of EZ magnesium alloy-ScienceDirect. Mater. Lett. 2018, 212, 323–326. [Google Scholar]
- Zhizhong, S.; Henry, H.; Xiang, C.; Qigui, W.; Wenying, Y. Gating system design for a magnesium alloy casting. J. Mater. Sci. Technol. 2008, 24, 93–95. [Google Scholar]
- Wang, H.-D.; La, P.-Q.; Shi, T.; Wei, Y.-P.; Lu, X.-F. Research status and development trend of bulk nano/micro-crystalline composite metallic materials. J. Mater. Eng. 2013, 3, 92–96. [Google Scholar]
- Świeboda, C.; Leszczyński, J. Influence of production technology on magnetic properties of nanocrystalline stacked and block magnetic cores. Prz. Elektrotechniczny 2016, 92, 281–285. [Google Scholar] [CrossRef][Green Version]
- Cheng, W.; Tian, L.; Ma, S.; Bai, Y.; Wang, H. Influence of Equal Channel Angular Pressing Passes on the Microstructures and Tensile Properties of Mg-8Sn-6Zn-2Al Alloy. Materials 2017, 10, 708. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Kang, S.H.; Kim, T.K.; Kim, S.C.; Oh, K.H.; Jang, J. Microstructure and Mechanical Properties of Ultrafine-Grained Austenitic Oxide Dispersion Strengthened Steel. Met. Mater. Trans. A 2016, 47, 5334–5343. [Google Scholar] [CrossRef]
- Guo, X.; Yang, G.; Weng, G. The saturation state of strength and ductility of bimodal nanostructured metals. Mater. Lett. 2016, 175, 131–134. [Google Scholar] [CrossRef]
- Korn, M.; Lapovok, R.; Bohner, A.; Hoppel, H.W.; Mughrabi, H. Bimodal grain size distributions in UFG materials produced by SPD–Their evolution and effect on the fatigue and monotonic strength properties. Met. Mater. 2011, 49, 51–63. [Google Scholar] [CrossRef]
- Azushima, A.; Kopp, R.; Korhonen, A.; Yang, D.Y.; Micari, F.; Lahoti, G.D.; Groche, P.; Yanagimoto, J.; Tsuji, N.; Rosochowski, A.; et al. Severe plastic deformation processes for metals. CIRP Ann. 2008, 57, 716–735. [Google Scholar] [CrossRef]
- Segal, V. Review: Modes and Processes of Severe Plastic Deformation (SPD). Materials 2018, 11, 1175. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Paramore, J.D.; Sun, P.; Chandran, K.R.; Zhang, Y.; Xia, Y.; Cao, F.; Koopman, M.; Free, M. Powder metallurgy of titanium-past, present, and future. Int. Mater. Rev. 2018, 63, 407–459. [Google Scholar] [CrossRef]
- Mahdieh, S.O.; Hamed, A.; Sina, S.; Mozhgan, S. Significant Corrosion Resistance in an Ultrafine-Grained Al6063 Alloy with a Bimodal Grain-Size Distribution through a Self-Anodic Protection Mechanism. Metals 2016, 6, 307. [Google Scholar]
- Zhao, Y.; Topping, T.; Bingert, J.F.; Thornton, J.J.; Dangelewicz, A.M.; Li, Y.; Liu, W.; Zhu, Y.; Zhou, Y.; Lavernia, E.J. High Tensile Ductility and Strength in Bulk Nanostructured Nickel. Adv. Mater. 2008, 20, 3028–3033. [Google Scholar] [CrossRef]
- Yu, P.-J.; Chen, S.-C.; Yen, H.-W.; Chang, H.-Y.; Yang, J.-R.; Wang, S.-H.; Chiu, P.-K.; Lin, T.-R. Large Delta T Thermal Cycling Induced Stress Accelerates Equilibrium and Transformation in Super DSS. Crystals 2020, 10, 962. [Google Scholar] [CrossRef]
- Wei, F.; La, P.; Ma, F.; Donic, T.; Wang, H. Enhanced intergranular corrosion resistance and tensile strength in 304 stainless steel with dispersed nanocrystallines in microcrystalline austenite. J. Mater. Res. 2016, 31, 1691–1701. [Google Scholar] [CrossRef]
- La, P.; Guo, X.; Wang, H.; Shi, T.; Zhen, X.; Wei, F.; Lu, X. Effect of annealing temperature on the microstructure and tensile properties of a bimodal nano/micro grained 1020 carbon steel prepared by aluminothermic reaction casting. Met. Mater. Int. 2016, 22, 236–242. [Google Scholar] [CrossRef]
- Aghili, S.; Enayati, M.; Karimzadeh, F. Synthesis of (Fe, Cr)3Al-Al2O3 nanocomposite through mechanochemical combustion reaction induced by ball milling of Cr, Al and Fe2O3 powders. Adv. Powder Technol. 2014, 25, 408–414. [Google Scholar] [CrossRef]
- Mishra, M.K.; Balasundar, I.; Rao, A.G.; Kashyap, B.P.; Prabhu, N. On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel. J. Mater. Eng. Perform. 2017, 26, 802–812. [Google Scholar] [CrossRef]
- Qingshan, W. Empirical formula for strength-hardness conversion of ferrous metals. Phys. Test. Chem. Anal. Part A Phys. Test. 1995, 31, 39–40. [Google Scholar]
- Macek, W.; Pejkowski, Ł.; Branco, R.; Nejad, R.M.; Żak, K. Fatigue fracture surface metrology of thin-walled tubular austenitic steel specimens after asynchronous loadings. Eng. Fail. Anal. 2022, 138, 106354–106371. [Google Scholar] [CrossRef]
- Azevedo, C.R.d.F.; Marques, E. Three-dimensional analysis of fracture, corrosion and wear surfaces. Eng. Fail. Anal. 2010, 17, 286–300. [Google Scholar] [CrossRef]
- Han, Y.; Zou, D.N.; Zhang, W.; Huang, R. Sigma Phase Precipitation of Duplex Stainless Steel and its Effect on Corrosion Resistance. Mater. Sci. Forum 2009, 620, 391–394. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Han, J.; Wu, H.C.; Yang, B.; Wang, X.T. Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel. Nucl. Eng. Des. 2013, 259, 1–7. [Google Scholar] [CrossRef]
Element | C | Cr | Ni | Mo | N | Mn | Si | Fe |
---|---|---|---|---|---|---|---|---|
wt.% | ≤0.03 | 24~26 | 6~8 | 3~5 | 0.24~0.32 | ≤1.2 | ≤0.8 | Balance |
Excess Percentage of Chromium | Composition (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
C | Al | Si | Mo | Cr | Mn | Fe | Ni | |
50% | 1.76 | 0.36 | 0.65 | 4.39 | 20.87 | 0.00 | 65.31 | 5.99 |
70% | 0.80 | 1.52 | 0.81 | 4.33 | 24.45 | 0.12 | 61.37 | 6.59 |
100% | 0.08 | 1.12 | 0.87 | 3.67 | 27.81 | 0.00 | 61.10 | 6.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, F.; Liu, X.; Zhang, H.; Wang, K.; Xu, S.; Zhu, M.; Zheng, Y.; La, P. Evolution of Structure and Properties of Micro-Nano Structure 2507 Duplex Stainless Steel Prepared by Aluminothermic Reduction. Crystals 2022, 12, 848. https://doi.org/10.3390/cryst12060848
Zhan F, Liu X, Zhang H, Wang K, Xu S, Zhu M, Zheng Y, La P. Evolution of Structure and Properties of Micro-Nano Structure 2507 Duplex Stainless Steel Prepared by Aluminothermic Reduction. Crystals. 2022; 12(6):848. https://doi.org/10.3390/cryst12060848
Chicago/Turabian StyleZhan, Faqi, Xiao Liu, Hua Zhang, Keliang Wang, Shipeng Xu, Min Zhu, Yuehong Zheng, and Peiqing La. 2022. "Evolution of Structure and Properties of Micro-Nano Structure 2507 Duplex Stainless Steel Prepared by Aluminothermic Reduction" Crystals 12, no. 6: 848. https://doi.org/10.3390/cryst12060848
APA StyleZhan, F., Liu, X., Zhang, H., Wang, K., Xu, S., Zhu, M., Zheng, Y., & La, P. (2022). Evolution of Structure and Properties of Micro-Nano Structure 2507 Duplex Stainless Steel Prepared by Aluminothermic Reduction. Crystals, 12(6), 848. https://doi.org/10.3390/cryst12060848