Improving Optoelectrical Properties of PEDOT: PSS by Organic Additive and Acid Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Experimental Details
2.3. Characteristic Measurements
3. Results
3.1. External Factor of Haze
3.2. Organic Additive Doping in PEDOT: PSS
3.3. Scanning Electron Microscopy Analysis of PEDOT: PSS Doped with the Organic Additive
3.4. FTIR Analysis of PEDOT: PSS Doped with Organic Additives
3.5. Proton Nuclear Magnetic Resonance (1H NMR) Analysis of PEDOT: PSS Doped with Organic Additives
3.6. Differences between Acid Treatment and Multi-Acid Treatment in PEDOT: PSS Films
3.7. Scanning Electron Microscopy Analysis of Acid Treatment and Multi-Acid Treatment in PEDOT: PSS Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alemu, D.; Wei, H.-Y.; Ho, K.-C.; Chu, C.-W. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ. Sci. 2012, 5, 9662–9671. [Google Scholar] [CrossRef]
- Singh, R.; Tharion, J.; Murugan, S.; Kumar, A. ITO-Free Solution-Processed Flexible Electrochromic Devices Based on PEDOT:PSS as Transparent Conducting Electrode. ACS Appl. Mater. Interfaces 2016, 9, 19427–19435. [Google Scholar] [CrossRef] [PubMed]
- Angmo, D.; Krebs, F.C. Flexible ITO-free polymer solar cells. J. Appl. Polym. Sci. 2013, 129, 1–14. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jung, J.H.; Lee, D.E.; Joo, J. Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents. Synth. Met. 2002, 126, 311–316. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.; Lee, D.; Koo, Y.; Joo, J.; Han, S.; Beag, Y.; Koh, S. Organic Based Flexible Speaker Through Enhanced Conductivity of PEDOT/PSS with Various Solvents. Synth. Met. 2003, 135–136, 13–14. [Google Scholar] [CrossRef]
- Ouyang, J. “Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 2013, 34, 423–436. [Google Scholar] [CrossRef]
- Huang, C.-J.; Chen, K.-L.; Tsao, Y.-J.; Chou, D.-W.; Chen, W.-R.; Meen, T.-H. Study of solvent-doped PEDOT: PSS layer on small molecule organic solar cells. Synth. Met. 2013, 164, 38–41. [Google Scholar] [CrossRef]
- Du, F.-P.; Cao, N.-N.; Zhang, Y.-F.; Fu, P.; Wu, Y.-G.; Lin, Z.-D.; Shi, R.; Amini, A.; Cheng, C. PEDOT:PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation. Sci. Rep. 2018, 8, 6441. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Singh, K.; Kumar, S.; Bhatt, K.; Dwivedi, Y.; Rana, A.; Tripathi, C.C. Fabrication of reduced graphene oxide modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate based transparent conducting electrodes for flexible optoelectronic application. SN Appl. Sci. 2021, 3, 26. [Google Scholar] [CrossRef]
- Pasha, A.; Khasim, S. Highly conductive organic thin films of PEDOT–PSS:silver nanocomposite treated with PEG as a promising thermo-electric material. J. Mater. Sci. Mater. Electron. 2020, 31, 9185–9195. [Google Scholar] [CrossRef]
- Onorato, A.; Invernale, M.A.; Berghorn, I.D.; Pavlik, C.; Sotzing, G.A.; Smith, M.B. Enhanced conductivity in sorbitol-treated PEDOT–PSS. Observation of an in situ cyclodehydration reaction. Synth. Met. 2010, 160, 2284–2289. [Google Scholar] [CrossRef]
- Zhang, F.; Inganäs, O. Conducting and Transparent Polymer Electrodes. In Organic Photovoltaics; CRC Press: Boca Raton, FL, USA, 2017; pp. 479–494. [Google Scholar]
- Sze, P.-W.; Lee, K.-W.; Huang, P.-C.; Chou, D.-W.; Kao, B.-S.; Huang, C.-J. The Investigation of High Quality PEDOT:PSS Film by Multilayer−Processing and Acid Treatment. Energies 2017, 10, 716. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, J.E.; Hanley, C.A.; Brennan, L.J.; Lambertini, V.G.; Gun’Ko, Y.K. Fabrication of highly transparent and conducting PEDOT:PSS films using a formic acid treatment. J. Mater. Chem. C 2013, 2, 764–770. [Google Scholar] [CrossRef]
- Khasim, S.; Pasha, A.; Lakshmi, M.; Chellasamy, P.; Kadarkarai, M.; Darwish, A.; Hamdalla, T.A.; Al-Ghamdi, S.; Alfadhli, S. Post treated PEDOT-PSS films with excellent conductivity and optical properties as multifunctional flexible electrodes for possible optoelectronic and energy storage applications. Opt. Mater. 2022, 125, 112109. [Google Scholar] [CrossRef]
- Lin, P.; Zhang, W.; Tian, L.; Jia, L.; Wen, F.; Duan, G.; Zhou, X.; Zhou, S.; Zhang, F.; Jiang, Y.; et al. Surface Modification of PEDOT:PSS for Enhanced Performance of Inverted Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 4408–4415. [Google Scholar] [CrossRef]
- Mochizuki, T.; Takigami, Y.; Kondo, T.; Okuzaki, H. Fabrication of flexible transparent electrodes using PEDOT:PSS and application to resistive touch screen panels. J. Appl. Polym. Sci. 2017, 135, 45972. [Google Scholar] [CrossRef]
- Jewłoszewicz, B.; Bogdanowicz, K.A.; Przybył, W.; Iwan, A.; Plebankiewicz, I. PEDOT:PSS in Water and Toluene for Organic Devices—Technical Approach. Polymers 2020, 12, 565. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.B.; Franses, E.I. Ultrathin PMMA films spin-coated from toluene solutions. Thin Solid Films 2003, 429, 71–76. [Google Scholar] [CrossRef]
- Guo, X.; Guo, C.W.; Wang, C.; Li, C.; Sun, X.M. AlGaInP LED with low-speed spin-coating silver nanowires as transparent conductive layer. Nanoscale Res. Lett. 2014, 9, 670. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, Y.; Chen, X. Synthesis of uniform silver nanowires from AgCl seeds for transparent conductive films via spin-coating at variable spin-speed. Colloids Surf. A Physicochem. Eng. Asp. 2018, 565, 154–161. [Google Scholar] [CrossRef]
- Lang, U.; Müller, E.; Naujoks, N.; Dual, J. Microscopical Investigations of PEDOT:PSS Thin Films. Adv. Funct. Mater. 2009, 19, 1215–1220. [Google Scholar] [CrossRef]
- Ning, H.; Zhang, X.; Wang, S.; Yao, R.; Liu, X.; Hou, D.; Ye, Q.; Li, J.; Huang, J.; Cao, X.; et al. Preparation and optimization of SnOx thin film by solution method at low temperature. Superlattices Microstruct. 2020, 139, 106400. [Google Scholar] [CrossRef]
- Lovchinov, K.; Nichev, H.; Ganchev, M.; Angelov, O.; Mikli, V.; Dimova-Malinovska, D. Electrochemically deposited nanostructured ZnO films for solar cells applications. Adv. Nat. Sci. Theory Appl. 2012, 1, 61–68. [Google Scholar]
- Pettersson, L.A.; Ghosh, S.; Inganäs, O. Optical anisotropy in thin films of poly (3, 4-ethylenedioxythiophene)–poly (4-styrenesulfonate). Org. Electron. 2002, 3, 143–148. [Google Scholar] [CrossRef]
- Chung, M.F.; Fu, C.M. Optical Transmittance and Dynamic Properties of Ferrofluids (Fe3O4) Under DC-Biased Magnetic Fields. IEEE Trans. Magn. 2011, 47, 3170–3172. [Google Scholar] [CrossRef]
- Mengistie, D.A.; Wang, P.-C.; Chu, C.-W. Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. J. Mater. Chem. A 2013, 1, 9907–9915. [Google Scholar] [CrossRef]
- Yavuz, A.G.; Gök, A. Preparation of TiO2/PANI composites in the presence of surfactants and investigation of electrical properties. Synth. Met. 2007, 157, 235–242. [Google Scholar] [CrossRef]
- Rwei, S.-P.; Lee, Y.-H.; Shiu, J.-W.; Sasikumar, R.; Shyr, U.-T. Characterization of Solvent-Treated PEDOT:PSS Thin Films with Enhanced Conductivities. Polymers 2019, 11, 134. [Google Scholar] [CrossRef] [Green Version]
- Timpanaro, S.; Kemerink, M.; Touwslager, F.; De Kok, M.; Schrader, S. Morphology and conductivity of PEDOT/PSS films studied by scanning–tunneling microscopy. Chem. Phys. Lett. 2004, 394, 339–343. [Google Scholar] [CrossRef]
- Günther, H. NMR Spectroscopy—Basic Principles, Concepts, and Applications in Chemistry; Wiley: Weinheim, Germany, 2013. [Google Scholar]
Spin Ratio (rpm) | Transmittance (%) | Haze (%) | Sheet Resistance (Ω/sq) | Conductivity (S/m) | Rq |
---|---|---|---|---|---|
500 (first stage) 2000 (second stage) | 88.2 | 0.25 | 6.1 × 105 | 6.4 | 1.26 |
1000 (first stage) 2000 (second stage) | 86.6 | 0.43 | 5.9 × 105 | 6.6 | 1.53 |
Sample | Sorbitol | Maltitol | ||
---|---|---|---|---|
Concentration (wt%) | Transmittance (%) | Haze (%) | Transmittance (%) | Haze (%) |
pristine | 87.5 | 0.31 | 87.5 | 0.31 |
2 | 87.6 | 0.16 | 85.4 | 0.45 |
4 | 90.3 | 0.14 | 86.2 | 0.41 |
6 | 88.3 | 0.18 | 86.0 | 0.47 |
8 | 87.9 | 0.20 | 85.1 | 0.53 |
Sample | Transmittance (%) | Haze (%) | Sheet Resistance (Ω/sq) | Conductivity (S/m) | Rq (nm) | Thickness (nm) |
---|---|---|---|---|---|---|
PEDOT: PSS | 87.5 | 0.31 | 6.2 × 105 | 6.3 | 1.21 | 152.9 |
Sorbitol 4 wt% | 90.3 | 0.14 | 1.7 × 105 | 22.1 | 0.80 | 159.1 |
Maltitol 4 wt% | 86.2 | 0.34 | 2.3 × 105 | 17.0 | 1.34 | 165.8 |
Sorbitol: Maltitol 1:3 | 87.1 | 0.29 | 1.6 × 105 | 24.4 | 1.29 | 173.9 |
Sorbitol: Maltitol 1:1 | 88.0 | 0.26 | 1.9 × 105 | 20.5 | 1.31 | 162.4 |
Sorbitol: Maltitol 3:1 | 87.9 | 0.21 | 1.5 × 105 | 26.0 | 0.93 | 157.3 |
Sample | PEDOT: PSS | Sorbitol 4 wt% | Maltitol 4 wt% | Sorbitol: Maltitol 3:1 | ||||
---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | |
Transmittance (%) | 87.5 | 87.8 | 90.3 | 89.1 | 86.2 | 86.9 | 87.9 | 88.0 |
Haze (%) | 0.31 | 0.28 | 0.14 | 0.17 | 0.34 | 0.41 | 0.21 | 0.25 |
Sheet Resistance (Ω/sq) | 6.2 × 105 | 235 | 1.7 × 105 | 175 | 2.3 × 105 | 243 | 1.5 × 105 | 154 |
Conductivity (S/m) | 6.3 | 1.6 × 104 | 22.1 | 2.2 × 104 | 17.0 | 1.6 × 104 | 26.0 | 2.5 × 104 |
Rq (nm) | 1.21 | 1.26 | 0.80 | 1.06 | 1.34 | 1.48 | 0.93 | 1.26 |
Thickness (nm) | 152.9 | 135.7 | 159.1 | 142.4 | 165.8 | 141.3 | 173.9 | 144.5 |
Sample | Transmittance (%) | Haze (%) | Sheet Resistance (Ω/sq) | Conductivity (S/m) | Rq (nm) | Thickness (nm) |
---|---|---|---|---|---|---|
PEDOT: PSS | 84.2 | 0.65 | 60 | 6.5 × 104 | 1.67 | 128.1 |
Sorbitol 4 wt% | ||||||
Maltitol 4 wt% | 86.5 | 0.45 | 170 | 2.3 × 104 | 1.51 | 132.5 |
Sorbitol: Maltitol 3:1 | 87.8 | 0.31 | 91 | 4.2 × 104 | 1.32 | 129.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lien, S.-Y.; Lin, P.-C.; Chen, W.-R.; Liu, C.-H.; Sze, P.-W.; Wang, N.-F.; Huang, C.-J. Improving Optoelectrical Properties of PEDOT: PSS by Organic Additive and Acid Treatment. Crystals 2022, 12, 537. https://doi.org/10.3390/cryst12040537
Lien S-Y, Lin P-C, Chen W-R, Liu C-H, Sze P-W, Wang N-F, Huang C-J. Improving Optoelectrical Properties of PEDOT: PSS by Organic Additive and Acid Treatment. Crystals. 2022; 12(4):537. https://doi.org/10.3390/cryst12040537
Chicago/Turabian StyleLien, Shui-Yang, Po-Chen Lin, Wen-Ray Chen, Chuan-Hsi Liu, Po-Wen Sze, Na-Fu Wang, and Chien-Jung Huang. 2022. "Improving Optoelectrical Properties of PEDOT: PSS by Organic Additive and Acid Treatment" Crystals 12, no. 4: 537. https://doi.org/10.3390/cryst12040537
APA StyleLien, S. -Y., Lin, P. -C., Chen, W. -R., Liu, C. -H., Sze, P. -W., Wang, N. -F., & Huang, C. -J. (2022). Improving Optoelectrical Properties of PEDOT: PSS by Organic Additive and Acid Treatment. Crystals, 12(4), 537. https://doi.org/10.3390/cryst12040537