Potential Role of ‘Green’ Synthesized Titanium Dioxide Nanoparticles in Photocatalytic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of TiO2 Nanoparticles
2.2. Characterization of Green TiO2 Nanoparticles
2.3. Photocatalytic Measurement
3. Results and Discussion
3.1. X-ray Diffraction Analysis of Titanium Dioxide
3.2. Particle Size Measurements
3.3. Transmission Electron Microscopic Analysis
3.4. Energy-Dispersive Spectroscopy Analysis
3.5. Fourier Transform Infrared Analysis
3.6. Photocatalytic Activity of Green TiO2
3.7. Degradation Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Irshad, M.A.; Nawaz, R.; Rehman, M.Z.U.; Adrees, M.; Rizwan, M.; Ali, S.; Ahmad, S.; Tasleem, S. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicol. Environ. Saf. 2021, 212, 111978. [Google Scholar] [CrossRef] [PubMed]
- Chand, K.; Cao, D.; Fouad, D.E.; Shah, A.H.; Lakhan, M.N.; Dayo, A.Q.; Sagar, H.J.; Zhu, K.; Mohamed, A.M.A. Photocatalytic and antimicrobial activity of biosynthesized silver and titanium dioxide nanoparticles: A comparative study. J. Mol. Liq. 2020, 316, 113821. [Google Scholar] [CrossRef]
- Reddy, N.L.; Rao, V.N.; Kumari, M.M.; Kakarla, R.R.; Ravi, P.; Sathish, M.; Karthik, M.; Venkatakrishnan, S.M. Inamuddin Nanostructured semiconducting materials for efficient hydrogen generation. Environ. Chem. Lett. 2018, 16, 765–796. [Google Scholar] [CrossRef]
- Rahimi, N.; Pax, R.A.; Gray, E.M. Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Chem. 2016, 44, 86–105. [Google Scholar] [CrossRef]
- Ilhan, H. A Comparative Study on the Photocatalytic Activity of Dye-Sensitized and Non-Sensitized Graphene Oxide-TiO2 Composites under Simulated and Direct Sunlight. Master’s Thesis, Izmir Institute of Technology, Izmir, Turkey, 2019. [Google Scholar]
- Syetali, M.; Anuratha, V.; Akila, M.; Yogananth, N. Anti genotic effect of TiO2 nanoparticles biosynthesized from sargassum polycystum- a marine macroalage. J. Nanomed. Res. 2017, 5, 25. [Google Scholar]
- Kiwaan, H.; Atwee, T.; Azab, E.; El-Bindary, A. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. J. Mol. Struct. 2019, 1200, 127115. [Google Scholar] [CrossRef]
- Su, C.; Hong, B.-Y.; Tseng, C.-M. Sol–gel preparation and photocatalysis of titanium dioxide. Catal. Today 2004, 96, 119–126. [Google Scholar] [CrossRef]
- Chen, H.-S.; Su, C.; Chen, J.-L.; Yang, T.-Y.; Hsu, N.-M.; Li, W.-R. Preparation and Characterization of Pure Rutile TiO2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells. J. Nanomater. 2011, 2010, 869618. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Tang, H.; Liu, M.; Chen, L.; Jing, M.; Shen, X.; Li, T.; Tan, J. TiO2 nanoparticles incorporation in carbon nanofiber as a multi-functional interlayer toward ultralong cycle-life lithium-sulfur batteries. J. Alloys Compd. 2019, 788, 639–648. [Google Scholar] [CrossRef]
- Awad, M.A.; Hend, A.A.; Ortashi, K.M.O.; Alenazi, W. Synthesis of Titanium Dioxide Nanoparticles Using Origanum Majorana Herbal Extracts. U.S. Patent 10,138,135 B1, 27 November 2018. [Google Scholar]
- Kandiel, T.A.; Robben, L.; Alkaima, A.; Bahnemann, D. Brookite versus anatase TiO2 photocatalysts: Phase transformations and photocatalytic activities. Photochem. Photobiol. Sci. 2013, 12, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Shanavas, S.; Priyadharsan, A.; Karthikeyan, S.; Dharmaboopathi, K.; Ragavan, I.; Vidya, C.; Acevedo, R.; Anbarasana, P. Green synthesis of titanium dioxide nanoparticles using Phyllanthus niruri leaf extract and study on its structural, optical and morphological properties. Mater. Today Proc. 2020, 26, 3531–3534. [Google Scholar] [CrossRef]
- Tarafdar, A.; Raliya, R.; Wang, W.-N.; Biswas, P.; Tarafdar, J.C. Green Synthesis of TiO2 Nanoparticle Using Aspergillus tubingensis. Adv. Sci. Eng. Med. 2013, 5, 943–949. [Google Scholar] [CrossRef]
- Hariharan, D.; Srinivasar, K.; Nehru, L.C. Synthesis and characterization of TiO2 nanoparticles using Cynodon Dactylon leaf extract for antibacterial and anticancer (A549 Cell Lines) activity. J. Nanomed. Res. 2017, 5, 00138. [Google Scholar]
- Khade, G.V.; Suwarnkar, M.B.; Gavade, N.L.; Garadkar, K.M. Green synthesis of TiO2 and its photocatalytic activity. J. Mater. Sci. Mater. Electron. 2015, 26, 3309–3315. [Google Scholar] [CrossRef]
- Gao, Y.; Masuda, Y.; Peng, Z.; Yonazawa, T.; Kaumoto, K. Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. J. Mat. Chem. 2007, 13, 608. [Google Scholar] [CrossRef]
- Gomes, J.; Lincho, J.; Domingues, E.; Quinta-Ferreira, R.M.; Martins, R.C. N–TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. Water 2019, 11, 373. [Google Scholar] [CrossRef] [Green Version]
- Maślana, K.; Żywicka, A.; Wenelska, K.; Mijowska, E. Boosting of Antibacterial Performance of Cellulose Based Paper sheet via TiO2 Nanoparticles. Int. J. Mol. Sci. 2021, 22, 1451. [Google Scholar] [CrossRef]
- Kunze, J.; Ghicov, A.; Hildebrand, H.; Macok, J.M.; Traveira, L.; Schmuki, P. Challenges in the Surface Analytical Characterisation of Anodic TiO2 Films—A Review. Phys. Chem. 2005, 219, 1561. [Google Scholar]
- Kothavale, V.P.; Patil, T.S.; Patil, P.B.; Bhosale, C.H. Photoelectrocatalytic degradation of Rhodamine B using N doped TiO2 thin Films. Mater. Today: Proc. 2020, 23, 382–388. [Google Scholar] [CrossRef]
- Darus, T.M.M.; Muktar, J. Degradation of Rhodamine B Dye by TiO2 Nanotubes Photocatalyst Synthesized via Alkaline Hydrothermal Method. MATEC Web of Conferences, 27, 03004. 2015. Available online: http://www.matec-conferences.org (accessed on 20 October 2015).
- Goyal, R.; Kishore, D. Investigation of photocatalytic degradation of rhodamine B by using nano-sized TiO2. Int. J. Sci. Res. Manag. 2017, 5, 6006–6013. [Google Scholar]
- Ahmed, M.A.; Abou-Gamra, Z.M.; Medien, H.A.A.; Hamza, M.A. Effect of porphyrin on photocatalytic activity of TiO2 na-noparticles toward rhodamine B photodegradation. J. Photochem. Photobiol. B 2017, 176, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, X.; Shao, G.; Duan, X.; Yang, H.; Wang, T. Preparation, characterization and photocatalytic activity of multi-walled carbon nanotube-supported tungsten trioxide composites. J. Phys. Chem. Solids 2008, 69, 2396–2400. [Google Scholar] [CrossRef]
- Dash, L.; Biswas, R.; Ghosh, R.; Kaur, V.; Banerjee, B.; Sen, T.; Patil, R.A.; Ma, Y.-R.; Haldar, K.K. Fabrication of mesoporous titanium dioxide using azadirachta indica leaves extract towards visible-light-driven photocatalytic dye degradation. J. Photochem. Photobiol. A Chem. 2020, 400, 112682. [Google Scholar] [CrossRef]
- Oh, Y.-C.; Bao, Y.; Jenks, W.S. Isotope studies of photocatalysis: TiO2-mediated degradation of dimethyl phenylphosphonate. J. Photochem. Photobiol. A Chem. 2003, 161, 69–77. [Google Scholar] [CrossRef]
- Sonker, R.K.; Hitkari, G.; Sabhajeet, S.; Sikarwar, S.; Rahul; Singh, S. Green synthesis of TiO2 nanosheet by chemical method for the removal of Rhodamin B from industrial waste. Mater. Sci. Eng. B 2020, 258, 114577. [Google Scholar] [CrossRef]
- Saranya, K.S.; Padil, V.V.T.; Senan, C.; Pilankatta, R.; Saranya, K.; George, B.; Wacławek, S.; Černík, M. Green Synthesis of High Temperature Stable Anatase Titanium Dioxide Nanoparticles Using Gum Kondagogu: Characterization and Solar Driven Photocatalytic Degradation of Organic Dye. Nanomaterials 2018, 8, 1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Goyal, V.; Singh, J.; Rawat, M. Structural, morphological, optical and photocatalytic properties of green synthesized TiO2 NPs. Curr. Res. Green Sustain. Chem. 2020, 3, 100033. [Google Scholar] [CrossRef]
- Haque, F.Z.; Nandanwar, R.; Singh, P. Evaluating photodegradation properties of anatase and rutile TiO2 nano-particles for organic compounds. Optik 2017, 128, 191–200. [Google Scholar] [CrossRef]
- Prashanth, V.; Priyanka, K.; Remya, N. Solar photocatalytic degradation of metformin by TiO2 synthesized using Calotropis gigantea leaf extract. Water Sci. Technol. 2021, 83, 1072–1084. [Google Scholar] [CrossRef]
- Isa, E.D.M.; Shameli, K.; Jusoh, N.W.C.; Hazan, R. Rapid photodecolorization of methyl orange and rhodamine B using zinc oxide nanoparticles mediated by pullulan at different calcination conditions. J. Nanostructure Chem. 2020, 11, 187–202. [Google Scholar] [CrossRef]
- Yang, D. (Ed.) Titanium Dioxide: Material for a Sustainable Environment; IntechOpen: London, UK, 2018. [Google Scholar]
TiO2 NPs Synthesized by | Size of TiO2 NPs | Source of Photons | Name of Pollutant | Degradation Percentage % |
---|---|---|---|---|
Cochlospermum gossypium gum extract [29] | 8–13 nm (TEM) | Sunlight | Methylene blue | Time and pH dependent about 90–100 |
Phyllanthus Emblica (amla) leaves extract [30] | 20–30 nm (TEM) | Solar | Coralline red | 93 |
Sol-gel method [31] | 73.99 nm (TEM) | Visible | Methylene blue and methyl orange | 73 and 69, respectively |
Calotropis gigantea leaf extract [32] | 42 nm (TEM) | Visible | Metformin | 97 |
Pullulan extract [33] | 28–127 nm (TEM) | UV | Methyl orange and rhodamine B | 99 for both dyes |
Films grown by metalorganic chemical vapor deposition (MOCVD) method [34] | Thickness of film 468 nm | UV Irradiation | Methyl orange | 69 |
Origanum majorana extract (our study) | 238 nm (DLS) | UV Irradiation | Rhodamine B | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, M.A.; Alanazi, M.M.; Hendi, A.A.; Virk, P.; Alrowaily, A.W.; Bahlool, T.; Alhakami, F.S.; Aouaini, F.; Ibrahim, E.M. Potential Role of ‘Green’ Synthesized Titanium Dioxide Nanoparticles in Photocatalytic Applications. Crystals 2022, 12, 1639. https://doi.org/10.3390/cryst12111639
Awad MA, Alanazi MM, Hendi AA, Virk P, Alrowaily AW, Bahlool T, Alhakami FS, Aouaini F, Ibrahim EM. Potential Role of ‘Green’ Synthesized Titanium Dioxide Nanoparticles in Photocatalytic Applications. Crystals. 2022; 12(11):1639. https://doi.org/10.3390/cryst12111639
Chicago/Turabian StyleAwad, Manal A., Meznah M. Alanazi, Awatif A. Hendi, Promy Virk, Albandari W. Alrowaily, Taghreed Bahlool, Fatehia S. Alhakami, Fatma Aouaini, and Eiman Mamoun Ibrahim. 2022. "Potential Role of ‘Green’ Synthesized Titanium Dioxide Nanoparticles in Photocatalytic Applications" Crystals 12, no. 11: 1639. https://doi.org/10.3390/cryst12111639
APA StyleAwad, M. A., Alanazi, M. M., Hendi, A. A., Virk, P., Alrowaily, A. W., Bahlool, T., Alhakami, F. S., Aouaini, F., & Ibrahim, E. M. (2022). Potential Role of ‘Green’ Synthesized Titanium Dioxide Nanoparticles in Photocatalytic Applications. Crystals, 12(11), 1639. https://doi.org/10.3390/cryst12111639