# Two-Dimensional Distributed Transmission-Line Models for Broadband Full-Tensor Anisotropic Acoustic Metamaterials Based on Transformation Acoustics

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Design Formulas

_{x}, V

_{x}

_{+1}, V

_{y}, V

_{y}

_{+1}] and I = [I

_{x}, −I

_{x}

_{+1}, I

_{y}, −I

_{y}

_{+1}], we can obtain those circuit equations as shown in the left column of Table 1 from Kirchhoff’s voltage and current laws. On the other hand, Maxwell’s equations and acoustic equations in the 2-D Cartesian coordinate system with z invariance can be written as in the center and the right columns of Table 1 by assuming z-polarized TE waves or acoustic waves in a full-tensor anisotropic metamaterials and time harmonic variation, respectively. Then, considering the correspondences of voltages, currents, electric fields, magnetic fields, scalar pressures, and fluid velocities, as shown in Table 2, we can obtain the following relations [7,8,33] between the circuit parameters per unit length (L′

_{x}, L′

_{y}, M′, and C′), the parameters of electromagnetic metamaterials (μ

_{xx}, μ

_{xy}= μ

_{yx}, μ

_{yy}, and ε

_{z}), and the parameters of acoustic metamaterials (ρ

_{xx}, ρ

_{xy}= ρ

_{yx}, ρ

_{yy}, and K′):

_{xy}= ρ

_{yx}< 0) and the lower signs correspond to the case of Figure 1b (ρ

_{xy}= ρ

_{yx}> 0). Moreover, according to the concept of transformation acoustics [35], the mass density tensor (ρ′) and the bulk modulus (K′) for mimicking transformed coordinate system can be calculated from the following formulas:

**A**is the Jacobian matrix, and ρ and K are the mass density and the bulk modulus for mimicking the original coordinate system, respectively.

_{x}l

_{x}= β

_{y}l

_{y}is also assumed to solve these formulas simultaneously. Then, substituting (1) and (2) for (5)–(8), we can obtain the following design formulas for acoustic metamaterials that are extended from those for electromagnetic metamaterials:

_{xy}= ρ

_{yx}< 0) and the lower signs correspond to the case of Figure 2b (ρ

_{xy}= ρ

_{yx}> 0). It is seen from these formulas that we can uniquely determine the characteristic impedances (Z

_{0x}, Z

_{0y}, Z

_{0M}) and the electrical lengths (βl and β

_{M}l

_{M}) for acoustic metamaterials.

#### 2.2. Proposed Acoustic Waveguide Unit Cell Structures

_{x}, w

_{y}, w

_{M}, and w

_{b}are the waveguide widths, l (=l

_{x}= l

_{y}), l

_{M}, and l

_{b}are the waveguide lengths, and Δd and Δd

_{b}(=Δd) are the waveguide unit cell lengths. The waveguide widths can be determined as the following formulas:

_{0b}is the characteristic impedance of the 2-D distributed TLs for the background medium shown in Figure 5. The ratio of the characteristic impedances can be obtained from (9)–(12). On the other hand, the waveguide lengths can be calculated with

_{M}are values of electrical lengths normalized by k

_{b}Δd

_{b}(k

_{b}is the wavenumber for the background medium) and represent the solutions of βl/k

_{b}Δd

_{b}and β

_{M}l

_{M}/k

_{b}Δd

_{b}obtained from (9)–(12), respectively. $\sqrt{2}$ denotes the 2-D effect of the unit cell structures [1,8].

#### 2.3. Design of an Acoustic Carpet Cloak and an Illusion Medium

_{b}= 10 mm, in the following, for simplicity.

_{0b}/Z

_{0x}, Z

_{0b}/Z

_{0y}, ϕ, and ϕ

_{M}by using (3), (4), (9)–(12), (15), and (16) with Z

_{0M}/Z

_{0b}= 1.061 (carpet cloak case) or 1.500 (illusion medium case), and calculated w

_{x}, w

_{y}, l, and l

_{M}from (13) and (14) with w

_{b}= 1.0 mm and l

_{b}= 11 mm. Figure 8 and Figure 9 show the results for the acoustic carpet cloak case (w

_{M}= 0.943 mm) and the acoustic illusion medium case (w

_{M}= 0.667 mm), respectively, and these are determined by considering the feasibility. Furthermore, the designed acoustic carpet cloak and illusion medium are illustrated in Figure 10a and Figure 11a. We carry out the full-wave simulations and compare those results with the cases of the flat surface (see Figure 10b), the bump (see Figure 10c), and the groove (see Figure 11b) in the next section.

## 3. Results and Discussion

#### 3.1. Acoustic Carpet Cloak

#### 3.2. Acoustic Illusion Medium

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Christopoulos, C. The Transmission-Line Modeling Method: TLM; IEEE: New York, NY, USA, 1995; pp. 51–100. [Google Scholar]
- Caloz, C.; Itoh, T. Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line. IEEE Antennas Propag. Soc. Int. Symp.
**2002**, 2, 412–415. [Google Scholar] - Oliner, A.A. A periodic-structure negative-refractive-index medium without resonant elements. IEEE AP-S/URSI Int. Symp. Dig.
**2002**, 2002, 41. [Google Scholar] - Eleftheriades, G.V.; Iyer, A.K.; Kremer, P.C. Planar negative refractive index media using periodically L–C loaded transmission lines. IEEE Trans. Microw. Theory Techn.
**2002**, 50, 2702–2712. [Google Scholar] [CrossRef] - Sanada, A.; Caloz, C.; Itoh, T. Characteristics of the composite right/left-handed transmission lines. IEEE Microw. Wirel. Comp. Lett.
**2004**, 14, 68–70. [Google Scholar] [CrossRef] - Sanada, A.; Caloz, C.; Itoh, T. Planar distributed structures with negative refractive index. IEEE Trans. Microw. Theory Tech.
**2004**, 52, 1252–1263. [Google Scholar] [CrossRef] - Nagayama, T.; Sanada, A. Physical equivalent circuit model for 2D full-tensor anisotropic metamaterials. IEEE MTT-S Int. Microw. Symp. Dig.
**2013**, 1–3. [Google Scholar] - Nagayama, T.; Sanada, A. Planar distributed full-tensor anisotropic metamaterials for transformation electromagnetics. IEEE Trans. Microw. Theory Techn.
**2015**, 63, 3851–3861. [Google Scholar] [CrossRef] - Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling electromagnetic fields. Science
**2006**, 312, 1780–1782. [Google Scholar] [CrossRef] [PubMed][Green Version] - Schurig, D.; Pendry, J.B.; Smith, D.R. Calculation of material properties and ray tracing in transformation media. Opt. Exp.
**2006**, 14, 9794–9804. [Google Scholar] [CrossRef] - Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science
**2006**, 314, 977–980. [Google Scholar] [CrossRef] [PubMed][Green Version] - Alitalo, P.; Luukkonen, O.; Jylhä, L.; Venermo, J.; Tretyakov, S. Transmission-line networks cloaking objects from electromagnetic fields. IEEE Trans. Antennas Propagat.
**2008**, 56, 416–424. [Google Scholar] [CrossRef][Green Version] - Tretyakov, S.; Alitalo, P.; Luukkonen, O.; Simovski, C. Broadband electromagnetic cloaking of long cylindrical objects. Phys. Rev. Lett.
**2009**, 103, 103905. [Google Scholar] [CrossRef] [PubMed] - Liu, X.; Li, C.; Yao, K.; Meng, X.; Feng, W.; Wu, B.; Li, F. Experimental verification of broadband invisibility using a cloak based on inductor-capacitor networks. Appl. Phys. Lett.
**2009**, 95, 191107. [Google Scholar] [CrossRef] - Kanté, B.; Germain, D.; de Lustrac, A. Experimentaldemonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Phys. Rev. B
**2009**, 80, 201104. [Google Scholar] [CrossRef][Green Version] - Alù, A. Mantle cloak: Invisibility induced by a surface. Phys. Rev. B
**2009**, 80, 245115. [Google Scholar] [CrossRef] - Padooru, Y.R.; Yakovlev, A.B.; Chen, P.-Y.; Alù, A. Analytical modeling of conformal mantle cloaks for cylindrical objects using subwavelength printed and slotted arrays. Appl. Phys. Lett.
**2012**, 112, 034907. [Google Scholar] - Selvanayagam, M.; Eleftheriades, G. An active electromagnetic cloak based on the equivalence principle. IEEE Antennas Microw. Wirel. Propag. Lett.
**2012**, 11, 10. [Google Scholar] - Selvanayagam, M.; Eleftheriades, G. Experimental demonstration of active electromagnetic cloaking. Phys. Rev. X
**2013**, 3, 041011. [Google Scholar] [CrossRef][Green Version] - Schofield, R.S.; Soric, J.C.; Rainwater, D.; Kerkhoff, A.; Alù, A. Scattering suppression and wideband tenability of a flexible mantle cloak for finite-length conducting rods. New J. Phys.
**2014**, 16, 063063. [Google Scholar] [CrossRef] - Sun, F.; Liu, Y.; He, S. Surface transformation multi-physics for controlling electromagnetic and acoustic waves simultaneously. Opt. Exp.
**2020**, 28, 94–106. [Google Scholar] [CrossRef] - Zhen, Z.; Qian, C.; Jia, Y.; Fan, Z.; Hao, R.; Cai, T.; Zheng, B.; Chen, H.; Li, E. Realizing transmitted metasurface cloak by a tandem neural network. Photonics. Res.
**2021**, 9, B229. [Google Scholar] [CrossRef] - Li, J.; Pendry, J.B. Hiding under the carpet: A new strategy for cloaking. Phys. Rev. Lett.
**2008**, 101, 203901. [Google Scholar] [CrossRef] [PubMed][Green Version] - Liu, R.; Ji, C.; Mock, J.J.; Chin, J.Y.; Cui, T.J.; Smith, D.R. Broadband ground-plane cloak. Science
**2009**, 323, 366–369. [Google Scholar] [CrossRef] [PubMed] - Valentine, J.; Li, J.; Zentgraf, T.; Bartal, G.; Zhang, X. An optical cloak made of dielectrics. Nat. Mater.
**2009**, 8, 568–571. [Google Scholar] [CrossRef] [PubMed][Green Version] - Lee, J.H.; Blair, J.; Tamma, V.A.; Wu, Q.; Rhee, S.J.; Summers, C.J.; Park, W. Direct visualization of optical frequency invisibility cloak based on silicon nanorod array. Opt. Exp.
**2009**, 17, 12922–12928. [Google Scholar] [CrossRef] - Gabrielli, L.H.; Cardenas, J.; Poitras, C.B.; Lipson, M. Silicon nanostructure cloak operating at optical frequencies. Nature Photon.
**2009**, 3, 461–463. [Google Scholar] [CrossRef][Green Version] - Ergin, T.; Stenger, N.; Brenner, P.; Pendry, J.B.; Wegener, M. Three-dimensional invisibility cloak at optical wavelengths. Science
**2010**, 328, 337–339. [Google Scholar] [CrossRef][Green Version] - Ma, H.F.; Cui, T.J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun.
**2011**, 1, 21. [Google Scholar] [CrossRef][Green Version] - Huang, Y.; Zhang, J.; Zhou, J.; Qiang, B.; Xu, Z.; Liu, L.; Tao, J.; Kossowski, N.; Wang, Q.; Luo, Y. Polarization-robust mid-infrared carpet cloak with minimized lateral shift. Photonics. Res.
**2021**, 9, 944. [Google Scholar] [CrossRef] - Lai, Y.; Ng, J.; Chen, H.Y.; Han, D.Z.; Xiao, J.J.; Zhang, Z.Q.; Chan, C.T. Illusion Optics: The optical transformation of an object into another object. Phys. Rev. Lett.
**2009**, 102, 253902. [Google Scholar] [CrossRef][Green Version] - Nagayama, T.; Sanada, A. Broadband transmission-line illusions based on transformation electromagnetics. EPJ Appl. Metamat.
**2019**, 6, 23. [Google Scholar] [CrossRef][Green Version] - Nagayama, T.; Uchida, S.; Fukushima, S.; Watanabe, T. Equivalent Circuit models for two-dimensional full-tensor anisotropic acoustic metamaterials. In Proceedings of the 2019 Photonics and Electromagnetics Research Symposium-Fall (PIERS-Fall), Xiamen, China, 17–20 December 2019; pp. 989–995. [Google Scholar]
- Toshima, A.; Nagayama, T.; Fukushima, S.; Watanabe, T. Acoustic illusion medium mimicking scattered waves of a groove on a flat surface based on transformation acoustics. In Proceedings of the 2021 Photonics and Electromagnetics Research Symposium (PIERS), Hangzhou, China, 21–25 November 2021; pp. 2587–2592. [Google Scholar]
- Cummer, S.A.; Schurig, D. One path to acoustic cloaking. New J. Phys.
**2007**, 9, 45. [Google Scholar] [CrossRef] - Chen, H.; Chan, C.T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett.
**2007**, 91, 183518. [Google Scholar] [CrossRef] - Norris, A.N. Acoustic cloaking theory. Proc. R. Soc. A Math. Phys. Eng. Sci.
**2008**, 464, 2411–2434. [Google Scholar] [CrossRef] - Torrent, D.; Sánchez-Dehesa, J. Acoustic cloaking in two dimensions: A feasible approach. New J. Phys.
**2008**, 10, 063015. [Google Scholar] [CrossRef] - Zhang, S.; Xia, C.; Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett.
**2011**, 106, 024301. [Google Scholar] [CrossRef] - García-Chocano, V.M.; Sanchis, L.; Díaz-Rubio, A.; Martínez-Pastor, J.; Cervera, F.; Llopis-Pontiveros, R.; Sánchez-Dehesa, J. Acoustic cloak for airborne sound by inverse design. Appl. Phys. Lett.
**2011**, 99, 074102. [Google Scholar] [CrossRef] - Guild, M.D.; Haberman, M.R.; Alù, A. Plasmonic-type acoustic cloak made of a bilaminate shell. Phys. Rev. B
**2012**, 86, 104302. [Google Scholar] [CrossRef] - Jo, C.; Jeong, J.; Kwon, B.-J.; Park, K.-C.; Oh, I.-K. Omnidirectional two-dimensional acoustic cloak by axisymmetric cylindrical lattices. Wave Motion
**2015**, 54, 157–169. [Google Scholar] [CrossRef] - Farhat, M.; Guenneau, S.; Alù, A.; Wu, Y. Scattering cancellation technique for acoustic spinning objects. Phys. Rev. B
**2020**, 101, 174111. [Google Scholar] [CrossRef] - Lin, C.; Liu, D.; Eggler, D.; Kessissoglou, N. Active acoustic cloaking and illusions of sound-hard bodies using the boundary element method. J. Acoust. Soc. Am.
**2021**, 149, 1803–1812. [Google Scholar] [CrossRef] [PubMed] - Ahmed, W.W.; Farhat, M.; Zhang, X.; Wu, Y. Deterministic and probabilistic deep learning models for inverse design of broadband acoustic cloak. Phys. Rev. Res.
**2021**, 3, 013142. [Google Scholar] [CrossRef] - Fujii, G.; Takahashi, M.; Akimoto, Y. Acoustic cloak designed by topology optimization for acoustic–elastic coupled systems. Appl. Phys. Lett.
**2021**, 118, 101102. [Google Scholar] [CrossRef] - Matsushima, K.; Noguchi, Y.; Yamada, T. Omnidirectional acoustic cloaking against airborne sound realized by a locally resonant sonic material. Sci. Rep.
**2022**, 12, 16383. [Google Scholar] [CrossRef] - Popa, B.-I.; Zigoneanu, L.; Cummer, S.A. Experimental acoustic ground cloak in air. Phys. Rev. Lett.
**2011**, 106, 253901. [Google Scholar] [CrossRef] - Popa, B.-I.; Cummer, S.A. Homogeneous and compact acoustic ground cloaks. Phys. Rev. B
**2011**, 83, 224304. [Google Scholar] [CrossRef][Green Version] - Zigoneanu, L.; Popa, B.-I.; Cummer, S.A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater.
**2014**, 13, 352–355. [Google Scholar] [CrossRef][Green Version] - Bi, Y.; Lu, W.; Ji, P.; Yang, J. Design and demonstration of an underwater acoustic carper cloak. Sci. Rep.
**2017**, 7, 705. [Google Scholar] [CrossRef][Green Version] - Chen, J.; Liu, J. Broadband underwater acoustic carpet cloak based on pentamode materials under normal incidence. AIP Adv.
**2018**, 8, 085024. [Google Scholar] [CrossRef] - Guo, J.; Zhou, J. An ultrathin acoustic carpet cloak based on resonators with extended necks. J. Phys. D Appl. Phys.
**2020**, 53, 505501. [Google Scholar] [CrossRef] - Xue, Y.; Zhang, X. Self-adaptive acoustic cloak enabled by soft mechanical metamaterials. Extrem. Mech. Lett.
**2021**, 46, 101347. [Google Scholar] [CrossRef] - Eslamzadeh, S.; Ghaffari-Miab, M.; Abbasi-Arand, B. Design of a broadband metamaterial-based acoustic lens using elaborated carpet cloak strategy. Appl. Phys. A
**2021**, 127, 897. [Google Scholar] [CrossRef] - Zhou, P.; Jia, H.; Bi, Y.; Liao, B.; Yang, Y.; Yan, Y.; Yan, K.; Zhang, J.; Yang, J. Underwater Carpet Cloak for Broadband and Wide-Angle Acoustic Camouflage Based on Three-Component Metafluid. Phys. Rev. Appl.
**2022**, 18, 014050. [Google Scholar] [CrossRef] - Kan, W.; Liang, B.; Zhu, X.; Li, R.; Zou, X.; Wu, H.; Yang, J.; Cheng, J. Acoustic illusion near boundaries of arbitrary curved geometry. Sci. Rep.
**2013**, 3, 1427. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kan, W.; Liang, B.; Ji, R.; Jiang, X.; Zou, Z.; Yin, L.-I.; Cheng, J. Three-dimensional broadband acoustic illusion cloak for sound-hard boundaries of curved geometry. Sci. Rep.
**2016**, 6, 36936. [Google Scholar] [CrossRef] - Eggler, D.; Kessissoglou, N. Active structural acoustic illusions. Sci. Rep.
**2020**, 10, 9772. [Google Scholar] [CrossRef] - Hu, C.; Yin, Y.; Chen, H. Three-Dimensional Omnidirectional Acoustic Illusion. Phys. Rev. Appl.
**2022**, 18, 024049. [Google Scholar] [CrossRef]

**Figure 1.**2-D equivalent circuit models for full-tensor anisotropic acoustic metamaterials. (

**a**) ρ

_{xx}< 0 case; (

**b**) ρ

_{xx}> 0 case.

**Figure 2.**2-D distributed TL models for determining the structural parameters of unit cells of full-tensor anisotropic acoustic metamaterials to be introduced from electromagnetic metamaterials. (

**a**) ρ

_{xx}< 0 case; (

**b**) ρ

_{xx}> 0 case. In the case of acoustic metamaterials, the phase constants (β and β

_{M}) of TLs correspond to those of acoustic waves.

**Figure 3.**2-D acoustic waveguide unit cell structures for realizing full-tensor anisotropic acoustic metamaterials. (

**a**) ρ

_{xx}< 0 case; (

**b**) ρ

_{xx}> 0 case. The waveguides are formed in the rigid body and are filled with the air.

**Figure 6.**Concept of an acoustic carpet cloak. (

**a**) Original coordinate system on a flat surface and the reflection from the flat surface; (

**b**) transformed coordinate system on a bump and the reflection from an acoustic carpet cloak covering the bump. The same reflected wave as that from the flat surface is generated by controlling the trajectory of the incident acoustic wave, with the carpet cloak mimicking the transformed coordinate system and it looks as if there is not the bump on the flat surface.

**Figure 7.**Concept of an illusion medium. (

**a**) Original coordinate system on a groove and scatterings of the incident acoustic wave by the groove; (

**b**) transformed coordinate system on a flat surface and scatterings of the incident acoustic wave from an illusion medium on the flat surface. The same scattered waves as that from the groove are generated by controlling the trajectory of the incident acoustic wave with the illusion medium and it looks like as if there is the groove on the flat surface.

**Figure 8.**Calculated results of the waveguide widths and lengths for the acoustic carpet cloak (w

_{M}= 0.943 mm). (

**a**) w

_{x}; (

**b**) w

_{y}; (

**c**) l; (

**d**) l

_{M}.

**Figure 9.**Calculated results of the waveguide widths and lengths for the acoustic illusion medium (w

_{M}= 0.667 mm). (

**a**) w

_{x}; (

**b**) w

_{y}; (

**c**) l; (

**d**) l

_{M}.

**Figure 10.**Designed acoustic carpet cloak and the additional designed structures for comparison. (

**a**) Carpet cloak; (

**b**) flat surface; (

**c**) bump. These sizes are 2p × h = 200 mm × 100 mm (2p × h) and those are discretized by using unit cells of Figure 3 (carpet cloak case) and Figure 4 (flat surface and bump cases) whose sizes are Δd × Δd = Δd

_{b}× Δd

_{b}= 10 mm × 10 mm. The structural parameters of Figure 8 are adopted to the unit cells of the carpet cloak, and those for the flat surface and the bump are w

_{b}= 1.0 mm and l

_{b}= 11 mm.

**Figure 11.**Designed acoustic illusion medium and the additional designed structure for comparison. (

**a**) Illusion medium; (

**b**) groove. These sizes are 2p × h = 200 mm × 100 mm (2p × h) and those are discretized by using unit cells of Figure 3 (illusion medium case) and Figure 4 (groove case) whose sizes are Δd × Δd = Δd

_{b}× Δd

_{b}= 10 mm × 10 mm. Structural parameters of Figure 9 are adopted to the unit cells of the carpet cloak, and those for the groove are w

_{b}= 1.0 mm and l

_{b}= 11 mm.

**Figure 12.**Full-wave simulation setup. (

**a**) Acoustic carpet cloak; (

**b**) flat surface; (

**c**) bump. The designed structures in Figure 10a-c are placed at the center of the bottom of the background medium area (400 mm × 200 mm). The bottom boundaries are set as the rigid body walls.

**Figure 13.**Complex sound pressure distributions for the acoustic carpet cloak, the flat surface, and the bump. (

**a**) 1.0 kHz (λ/∆d = 22.3); (

**b**) 1.5 kHz (λ/∆d = 14.8); (

**c**) 2.0 kHz (λ/∆d = 11.1); (

**d**) 2.5 kHz (λ/∆d = 8.91); (

**e**) 3.0 kHz (λ/∆d = 7.42); (

**f**) 3.5 kHz (λ/∆d = 6.36). Left: Amplitude. Right: Phase.

**Figure 14.**Full-wave simulation setup. (

**a**) Acoustic illusion medium; (

**b**) groove. The designed structures in Figure 11a,b are placed at the center of the bottom of the background medium area (400 mm × 200 mm). In the case of (

**b**), the groove is on the lower position than the flat surface level. The bottom boundaries are set as the rigid body walls.

**Figure 15.**Complex sound pressure distributions for the acoustic illusion medium and the groove. (

**a**) 1.0 kHz (λ/∆d = 22.3); (

**b**) 1.5 kHz (λ/∆d = 14.8); (

**c**) 2.0 kHz (λ/∆d = 11.1); (

**d**) 2.5 kHz (λ/∆d = 8.91); (

**e**) 3.0 kHz (λ/∆d = 7.42); (

**f**) 3.5 kHz (λ/∆d = 6.36). Left: Amplitude. Right: Phase.

**Table 1.**Circuit equations, 2-D Maxwell’s equations, and 2-D acoustic equations for full-tensor anisotropic electromagnetic or acoustic metamaterials.

Circuit Equations | 2-D Maxwell’s Equations | 2-D Acoustic Equations |
---|---|---|

$-\frac{{I}_{x+1}-{I}_{x}}{\mathsf{\Delta}d}-\frac{{I}_{y+1}-{I}_{y}}{\mathsf{\Delta}d}=j\omega {C}^{\prime}{V}_{\mathrm{c}}$ | $\frac{\partial {H}_{y}}{\partial x}-\frac{\partial {H}_{x}}{\partial y}=j\omega {\epsilon}_{z}{E}_{z}$ | $-\frac{\partial {v}_{x}}{\partial x}-\frac{\partial {v}_{y}}{\partial y}=j\omega \frac{1}{K}p$ |

$\frac{{V}_{x+1}-{V}_{x}}{\mathsf{\Delta}d}=\pm j\omega {M}^{\prime}\frac{{I}_{y+1}+{I}_{y}}{2}-j\omega {L}_{x}^{\prime}\frac{{I}_{x+1}+{I}_{x}}{2}$ | $\frac{\partial {E}_{z}}{\partial x}=j\omega {\mu}_{yx}{H}_{x}+j\omega {\mu}_{yy}{H}_{y}$ | $\frac{\partial p}{\partial x}=-j\omega {\rho}_{xy}{v}_{y}-j\omega {\rho}_{xx}{v}_{x}$ |

$\frac{{V}_{y+1}-{V}_{y}}{\mathsf{\Delta}d}=-j\omega {L}_{y}^{\prime}\frac{{I}_{y+1}+{I}_{y}}{2}\pm j\omega {M}^{\prime}\frac{{I}_{x+1}+{I}_{x}}{2}$ | $\frac{\partial {E}_{z}}{\partial y}=-j\omega {\mu}_{xx}{H}_{x}-j\omega {\mu}_{xy}{H}_{y}$ | $\frac{\partial p}{\partial y}=-j\omega {\rho}_{yy}{v}_{y}-j\omega {\rho}_{yx}{v}_{x}$ |

**Table 2.**Correspondences of voltages, currents, electric fields, magnetic fields, scalar pressures, and fluid velocities in the equations of Table 1.

Circuit Equations | 2-D Maxwell’s Equations | 2-D Acoustic Equations |
---|---|---|

${V}_{\mathrm{c}}$ | ${E}_{z}$ | $p$ |

$\frac{{V}_{x+1}-{V}_{x}}{\mathsf{\Delta}d}$ | $\frac{\partial {E}_{z}}{\partial x}$ | $\frac{\partial p}{\partial x}$ |

$\frac{{V}_{y+1}-{V}_{y}}{\mathsf{\Delta}d}$ | $\frac{\partial {E}_{z}}{\partial y}$ | $\frac{\partial p}{\partial y}$ |

$\frac{{I}_{x+1}+{I}_{x}}{2}$ | $-{H}_{y}$ | ${v}_{x}$ |

$\frac{{I}_{y+1}+{I}_{y}}{2}$ | ${H}_{x}$ | ${v}_{y}$ |

$\frac{{I}_{x+1}-{I}_{x}}{\mathsf{\Delta}d}$ | $-\frac{\partial {H}_{y}}{\partial x}$ | $\frac{\partial {v}_{x}}{\partial x}$ |

$\frac{{I}_{y+1}-{I}_{y}}{\mathsf{\Delta}d}$ | $\frac{\partial {H}_{x}}{\partial y}$ | $\frac{\partial {v}_{y}}{\partial y}$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nagayama, T.; Toshima, A.; Fukushima, S.; Watanabe, T. Two-Dimensional Distributed Transmission-Line Models for Broadband Full-Tensor Anisotropic Acoustic Metamaterials Based on Transformation Acoustics. *Crystals* **2022**, *12*, 1557.
https://doi.org/10.3390/cryst12111557

**AMA Style**

Nagayama T, Toshima A, Fukushima S, Watanabe T. Two-Dimensional Distributed Transmission-Line Models for Broadband Full-Tensor Anisotropic Acoustic Metamaterials Based on Transformation Acoustics. *Crystals*. 2022; 12(11):1557.
https://doi.org/10.3390/cryst12111557

**Chicago/Turabian Style**

Nagayama, Tsutomu, Akihiro Toshima, Seiji Fukushima, and Toshio Watanabe. 2022. "Two-Dimensional Distributed Transmission-Line Models for Broadband Full-Tensor Anisotropic Acoustic Metamaterials Based on Transformation Acoustics" *Crystals* 12, no. 11: 1557.
https://doi.org/10.3390/cryst12111557