Morphology Control of PbZrxTi1-xO3 Crystallites under Alkaline Hydrothermal Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis Procedure
2.3. Characterization
3. Results and Discussion
3.1. Formation of the PZT with the Target Zr/Ti = 60/40 (PZT06) through One-Step Precipitation Approach
3.2. Hydrothermal Formation of PZT Using Two-Step Precipitation Approach
3.2.1. Controlling of the PZT Particle Morphology Using Two-Step Precipitation Approach and Initial Zr/Ti = 60/40 (PZT06)
3.2.2. Controlling of the PZT Particle Morphology Using Two-Step Precipitation Approach and Initial Zr/Ti = 70/30 (PZT07) and Zr/Ti = 80/20 (PZT08)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Noheda, B.; Cox, D.E.; Shirane, G.; Guo, R.; Jones, B.; Cross, L.E. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys. Rev. B 2000, 63, 014103. [Google Scholar] [CrossRef]
- Dong, N.; Zhu, K.; Qiu, J.; Liu, J. Sol-solvothermal synthesis and characterization of fine lead zirconate titanate particles. J. Mater. Sci. Mater. Electron. 2013, 24, 2264–2270. [Google Scholar] [CrossRef]
- Meng, Q.; Zhu, K.; Pang, X.; Qiu, J.; Shao, B.; Ji, H. Sol-hydrothermal synthesis and characterization of lead zirconate titanate fine particles. Adv. Powder Technol. 2013, 24, 212–217. [Google Scholar] [CrossRef]
- Huang, H.L.; Cao, G.Z.; Shen, I.Y. Hydrothermal synthesis of lead zirconate titanate (PZT or Pb(Zr 0.52Ti0.48)O3) nano-particles using controlled ramping and cooling rates. Sens. Actuators A Phys. 2014, 214, 111–119. [Google Scholar] [CrossRef]
- Malic, B.; Arcon, I.; Kodre, A.; Kosec, M. Homogeneity of Pb(Zr,Ti)O3 thin films by chemical solution deposition: Extended x-ray absorption fine structure spectroscopy study of zirconium local environment. J. Appl. Phys. 2006, 100, 051612. [Google Scholar] [CrossRef]
- Wu, A.; Vilarinho, P.M.; Miranda Salvado, I.M.; Baptista, J.L. Sol-gel preparation of lead zirconate titanate powders and ceramics: Effect of alkoxide stabilizers and lead precursors. J. Am. Ceram. Soc. 2000, 83, 1379–1385. [Google Scholar] [CrossRef]
- Lazar, I.; Majchrowski, A.; Soszyński, A.; Roleder, K. Phase Transitions and Local Polarity above TC in a PbZr0.87Ti0.13O3 Single Crystal. Crystals 2020, 10, 286. [Google Scholar] [CrossRef]
- Xu, G.; Jiang, W.; Qian, M.; Chen, X.; Li, Z.; Han, G. Hydrothermal synthesis of lead zirconate titanate nearly free-standing nanoparticles in the size regime of about 4 nm. Cryst. Growth Des. 2009, 9, 13–16. [Google Scholar] [CrossRef]
- Chen, J.X.; Li, J.W.; Cheng, C.C.; Chiu, C.W. Piezoelectric Property Enhancement of PZT/Poly(vinylidenefluoride-co-trifluoroethylene) Hybrid Films for Flexible Piezoelectric Energy Harvesters. ACS Omega 2022, 7, 793–803. [Google Scholar] [CrossRef]
- Luk’yanchuk, I.; Tikhonov, Y.; Razumnaya, A.; Vinokur, V.M. Hopfions emerge in ferroelectrics. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Panda, P.K.; Sahoo, B. PZT to lead free piezo ceramics: A review. Ferroelectrics 2015, 474, 128–143. [Google Scholar] [CrossRef]
- Koruza, J.; Bell, A.J.; Frömling, T.; Webber, K.G.; Wang, K.; Rödel, J. Requirements for the transfer of lead-free piezoceramics into application. J. Mater. 2018, 4, 13–26. [Google Scholar] [CrossRef]
- Maček Kržmanc, M.; Klement, D.; Jančar, B.; Suvorov, D. Hydrothermal conditions for the formation of tetragonal BaTiO3 particles from potassium titanate and barium salt. Ceram. Int. 2015, 41, 15128–15137. [Google Scholar] [CrossRef]
- Čontala, A.; Kržmanc, M.M.; Suvorov, D. Plate-like Bi4Ti3O12 particles and their topochemical conversion to SrTiO3 under hydrothermal conditions. Acta Chim. Slov. 2018, 65, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Maček Kržmanc, M.; Daneu, N.; Čontala, A.; Santra, S.; Kamal, K.M.; Likozar, B.; Spreitzer, M. SrTiO3/Bi4Ti3O12 Nanoheterostructural Platelets Synthesized by Topotactic Epitaxy as Effective Noble-Metal-Free Photocatalysts for pH-Neutral Hydrogen Evolution. ACS Appl. Mater. Interfaces 2021, 13, 370–381. [Google Scholar] [CrossRef]
- Maček Kržmanc, M.; Bračko, I.; Budič, B.; Suvorov, D. The morphology control of BaTiO3 particles synthesized in water and a water/ethanol solvent. J. Am. Ceram. Soc. 2013, 96, 3401–3409. [Google Scholar] [CrossRef]
- Kalyani, V.; Vasile, B.S.; Ianculescu, A.; Testino, A.; Carino, A.; Buscaglia, M.T.; Buscaglia, V.; Nanni, P. Hydrothermal Synthesis of SrTiO3: Role of Interfaces. Cryst. Growth Des. 2015, 15, 5712–5725. [Google Scholar] [CrossRef]
- Canu, G.; Buscaglia, V. Hydrothermal synthesis of strontium titanate: Thermodynamic considerations, morphology control and crystallisation mechanisms. CrystEngComm 2017, 19, 3867–3891. [Google Scholar] [CrossRef]
- Cheng, H.; Ma, J.; Zhu, B.; Cui, Y. Reaction Mechanisms in the Formation of Lead Zirconate Titanate Solid Solutions under Hydrothermal Conditions. J. Am. Ceram. Soc. 1993, 76, 625–629. [Google Scholar] [CrossRef]
- Traianidis, M.; Courtois, C.; Leriche, A.; Thierry, B. Hydrothermal synthesis of lead zirconium titanate (PZT) powders and their characteristics. J. Eur. Ceram. Soc. 1999, 19, 1023–1026. [Google Scholar] [CrossRef]
- Piticescu, R.M.; Moisin, A.M.; Taloi, D.; Badilita, V.; Soare, I. Hydrothermal synthesis of ultradisperse PZT powders for polar ceramics. J. Eur. Ceram. Soc. 2004, 24, 931–935. [Google Scholar] [CrossRef]
- Łencka, M.M.; Riman, R.E. Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders. Chem. Mater. 1993, 5, 61–70. [Google Scholar] [CrossRef]
- Livage, J.; Henry, M.; Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 1988, 18, 259–341. [Google Scholar] [CrossRef]
- Wiberg, V.E.; Wiberg, N.; Holleman, A.F. Inorganic Chemistry; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Jaffe, B.; Cook, W.R.; Jaffe, H. Piezoelectric Ceramics, 1st ed.; Academic Press: Cambridge, MA, USA, 1971; ISBN 978-0-12-379550-2. [Google Scholar]
- Courtois, C.; Crampon, J.; Champagne, P.; Cochrane, C.; Texier, N.; Leriche, A. STEM-X-EDS analysis of morphotropic PZT ceramics. Analysis of Zr/Ti + Zr values fluctuation depending on microstructure and synthesis route of powders. Ceram. Int. 2006, 32, 767–773. [Google Scholar] [CrossRef]
- Noheda, B.; Gonzalo, J.A.; Cross, L.E.; Guo, R.; Park, S.-E.; Cox, D.E.; Shirane, G. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3. Phys. Rev. B 2000, 61, 8687–8695. [Google Scholar] [CrossRef]
- Chao, C.; Ren, Z.; Zhu, Y.; Xiao, Z.; Liu, Z.; Xu, G.; Mai, J.; Li, X.; Shen, G.; Han, G. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates. Angew. Chem. Int. Ed. 2012, 51, 9283–9287. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287. [Google Scholar] [CrossRef] [PubMed]
- Dang, F.; Kato, K.; Imai, H.; Wada, S.; Haneda, H.; Kuwabara, M. Oriented aggregation of BaTiO3 nanocrystals and large particles in the ultrasonic-assistant synthesis. CrystEngComm 2010, 12, 3441–3444. [Google Scholar] [CrossRef]
Target Composition (Synthesis Approach) | Concentrations (mol/L) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentrations of Initial Solutions (mol/L) | Concentrations in the PTFE Insert before Hydrothermal Reaction (mol/L) | ||||||||||||||
PZT06 (one-step) | TALH * | 0.112 | 0.0112 | ||||||||||||
ZrOCl2·8H2O | 0.168 | 0.0168 | |||||||||||||
Pb(OOCCH3)2·3H2O | 0.175 | 0.035 | |||||||||||||
KOH (OH:Pb) | 40:1 | 30:1 | 20:1 | 6:1 | 5:1 | 4:1 | 3:1 | 40:1 | 30:1 | 20:1 | 6:1 | 5:1 | 4:1 | 3:1 | |
KOH (mol/L) | 3.5 | 2.6 | 1.75 | 0.53 | 0.44 | 0.35 | 0.26 | 1.400 | 1.050 | 0.700 | 0.210 | 0.175 | 0.140 | 0.110 | |
PZT06 (two-step) | TALH * | 0.112 | Precipitation Zr-Ti: (KOH:(Zr + Ti) = 7.8:1): pH = 7 | 0.0112 | |||||||||||
ZrOCl2·8H2O | 0.14 | 0.0168 | |||||||||||||
Pb(OOCCH3)2·3H2O | 0.175 | 0.035 | |||||||||||||
KOH (OH:Pb) | 3:1 | 2:1 | 1.7:1 | 1.5:1 | 3:1 | 2:1 | 1.7:1 | 1.5:1 | |||||||
KOH (mol/L) | 0.750 | 0.500 | 0.429 | 0.735 | 0.1050 | 0.070 | 0.0600 | 0.053 | |||||||
PZT07 (two-step) | TALH * | 0.084 | Precipitation Zr-Ti: (KOH:(Zr + Ti) = 7.8:1): pH = 7 | 0.0084 | |||||||||||
ZrOCl2·8H2O | 0.163 | 0.0196 | |||||||||||||
Pb(OOCCH3)2·3H2O | 0.175 | 0.035 | |||||||||||||
KOH (OH:Pb) | 3:1 | 2:1 | 1.7:1 | 1.5:1 | 3:1 | 2:1 | 1.7:1 | 1.5:1 | |||||||
KOH (mol/L) | 0.750 | 0.500 | 0.429 | 0.735 | 0.105 | 0.070 | 0.060 | 0.053 | |||||||
PZT08 (two-step) | TALH * | 0.056 | Precipitation Zr-Ti: (KOH:(Zr + Ti) = 7.8:1): pH = 7 | 0.0056 | |||||||||||
ZrOCl2·8H2O | 0.187 | 0.0224 | |||||||||||||
Pb(OOCCH3)2·3H2O | 0.175 | 0.035 | |||||||||||||
KOH (OH:Pb) | 3:1 | 2:1 | 1.7:1 | 1.5:1 | 3:1 | 2:1 | 1.7:1 | 1.5:1 | |||||||
KOH (mol/L) | 0.750 | 0.500 | 0.429 | 0.735 | 0.105 | 0.070 | 0.060 | 0.053 |
Proposed PZT Composition (Synthesis Approach) | KOH:Pb | Typical Morphology (Average Composition as Obtained from EDS-Normalized to ABO3 Perovskite Structure) | Average Length of Perovskite Cube Edge (Standard Deviation) |
---|---|---|---|
PZT06 (one-step) | 30:1 | Perovskite-cube-like (Pb0.83K0.06Zr0.39Ti0.68O3) | Cube-like perovskite/1–2 μm |
Zr-rich nanoparticles (Pb0.14K0.42Zr1.12Ti0.2O3) | |||
20:1 | Perovskite cubes (PbZr0.56Ti0.45O3) | Cubes/4 μm (1 μm) | |
6:1 | Perovskite cubes (PbZr0.55Ti0.44O3) | Cubes/649 nm (80 nm) | |
5:1 | Perovskite cubes (PbZr0.5Ti0.5O3) | Cubes/567 nm (72 nm) | |
4:1 | Perovskite cubes (PbZr0.56Ti0.42O3) | Cubes/410 nm (48 nm) | |
3:1 | Perovskite dendrites (PbZr0.31Ti0.69O3) | μm-size | |
Additional phase (Pb0.69Zr0.67Ti0.48O3) | perovskite dendrite | ||
PZT06 (two-step) | 3:1 | Perovskite cubes (PbZr0.55Ti0.43O3) | Cubes/446 nm (54 nm) |
2:1 | Perovskite cubes (PbZr0.52Ti0.48O3) | Cubes/260 nm (31 nm) | |
1.7:1 | Perovskite cubes (PbZr0.46Ti0.54O3) | Cubes/172 nm (36 nm) | |
1.5:1 | Perovskite aggregated and cube-like particles (Pb0.94Zr0.46Ti0.55O3) | Cube-like/182 nm (48 nm) | |
PZT07 (two-step) | 3:01 | Perovskite cubes (PbZr0.58Ti0.41O3 | Cubes/613 nm (132 nm) |
2:01 | Perovskite cubes (PbZr0.53Ti0.47O3) | Cubes/301 nm (61 nm) | |
1.7:1 | Perovskite cubes (PbZr0.51Ti0.49O3) | Cube-like/241 nm (46 nm) | |
1.5:1 | Perovskite (aggregated) cubes (PbZr0.47Ti0.53O3) | Cube-like/185 nm (33 nm) | |
PZT08 (two-step) | 3:01 | Perovskite cubes (PbZr0.59Ti0.4O3 | Cubes/849 nm (117 nm) |
2:01 | Perovskite cubes (PbZr0.5Ti0.5O3) | Cube-like/355 nm (67 nm) | |
1.7:1 | Perovskite cubes (PbZr0.52Ti0.46O3) | Cube-like/350 nm (75 nm) | |
1.5:1 | Perovskite dendrites (Pb0.94Zr0.31Ti0.72O3) | Dendrites (several μm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kržmanc, M.M.; Kutnjak, Z.; Spreitzer, M. Morphology Control of PbZrxTi1-xO3 Crystallites under Alkaline Hydrothermal Conditions. Crystals 2022, 12, 1514. https://doi.org/10.3390/cryst12111514
Kržmanc MM, Kutnjak Z, Spreitzer M. Morphology Control of PbZrxTi1-xO3 Crystallites under Alkaline Hydrothermal Conditions. Crystals. 2022; 12(11):1514. https://doi.org/10.3390/cryst12111514
Chicago/Turabian StyleKržmanc, Marjeta Maček, Zdravko Kutnjak, and Matjaž Spreitzer. 2022. "Morphology Control of PbZrxTi1-xO3 Crystallites under Alkaline Hydrothermal Conditions" Crystals 12, no. 11: 1514. https://doi.org/10.3390/cryst12111514
APA StyleKržmanc, M. M., Kutnjak, Z., & Spreitzer, M. (2022). Morphology Control of PbZrxTi1-xO3 Crystallites under Alkaline Hydrothermal Conditions. Crystals, 12(11), 1514. https://doi.org/10.3390/cryst12111514