Synthesis and Crystal Structure of the Short LnSb2O4Br Series (Ln = Eu–Tb) and Luminescence Properties of Eu3+-Doped Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of LnSb2O4Br Representatives
2.2. Single-Crystal and Powder X-ray Diffraction
2.3. Electron-Beam Microprobe Analysis
2.4. Photoluminescence Investigations
3. Results and Discussion
3.1. Crystal-Structure Description
3.2. Powder X-ray Diffraction
3.3. Electron-Probe Microanalysis
3.4. Photoluminescence Spectroscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Formula | EuSb2O4Br | TbSb2O4Br |
---|---|---|
Crystal system | monoclinic | |
Space group | P21/c (no. 14) | |
Lattice constants, a/pm | 895.69(6) | 895.37(6) |
b/pm | 791.82(5) | 786.14(5) |
c/pm | 790.38(5) | 785.09(5) |
β/° | 91.817(3) | 91.638(3) |
Formula units, Z | 4 | |
Calculated density, Dx/g∙cm–3 | 6.394 | 6.569 |
Molar volume, Vm/cm3∙mol–1 | 84, 36 | 83, 17 |
Diffractometer | StadiVari (STOE, four-circle diffractometer) | |
Wavelength (λ/pm) | 71.07 (Mo-Kα) | |
F(000) | 928 | 936 |
2θmax/° | 63.58 | 63.72 |
hkl range (±hmax, ±kmax, ±lmax) | 13, 11, 11 | 12, 11, 11 |
Observed reflections | 19853 | 12173 |
Unique reflections | 1840 | 1438 |
Absorption coefficient, µ/mm–1 | 27.68 | 29.52 |
Absorption correction | numerical (Stoe X-Shape 2.21) | |
Rint/Rσ | 0.076/0.041 | 0.078/0.045 |
R1/R1 with |FO| ≥ 4σ(FO) | 0.055/0.034 | 0.047/0.033 |
wR2/GooF | 0.082/1.047 | 0.071/1.019 |
Structure determination and refinement | Program package ShelX-1997 [31,32] | |
Extinction coefficient, ε/pm–3 | 0.00012(9) | 0.00022(9) |
Residual electron density, ρ/e– 10–6 pm–3 | +1.91/−1.78 | +2.02/−1.95 |
CCDC number | CSD-2016635 | CSD-2016636 |
Atom | x/a | y/b | z/c | Ueq/pm2 |
---|---|---|---|---|
Eu | 0.48857(4) | 0.23760(5) | 0.50274(5) | 104(1) |
Sb1 | 0.78149(6) | 0.05812(7) | 0.75756(7) | 108(1) |
Sb2 | 0.21659(6) | 0.00677(7) | 0.79543(7) | 103(1) |
O1 | 0.6332(6) | 0.0021(7) | 0.5856(7) | 147(12) |
O2 | 0.3642(6) | 0.1758(7) | 0.7481(7) | 123(11) |
O3 | 0.6656(6) | 0.0086(7) | 0.9703(7) | 112(11) |
O4 | 0.6686(6) | 0.2105(7) | 0.2594(7) | 107(10) |
Br | 0.02117(11) | 0.23521(12) | 0.50388(12) | 205(2) |
Tb | 0.48990(4) | 0.23728(5) | 0.50185(5) | 85(1) |
Sb1 | 0.78039(6) | 0.05548(7) | 0.75626(7) | 92(2) |
Sb2 | 0.21888(6) | 0.00810(7) | 0.79380(7) | 90(1) |
O1 | 0.6321(6) | 0.0028(7) | 0.5804(7) | 128(14) |
O2 | 0.3675(6) | 0.1777(7) | 0.7465(7) | 111(13) |
O3 | 0.6617(6) | 0.0069(7) | 0.9696(7) | 100(13) |
O4 | 0.6686(6) | 0.2102(7) | 0.2597(7) | 118(13) |
Br | 0.01915(12) | 0.23617(11) | 0.50403(11) | 188(2) |
Contact | EuSb2O4Br | TbSb2O4Br |
---|---|---|
Ln–O1 | 228.7 | 226.6 |
Ln–O1′ | 235.2 | 231.4 |
Ln–O2 | 231.9 | 228.7 |
Ln–O2′ | 237.1 | 235.4 |
Ln–O3 | 256.4 | 253.0 |
Ln–O3′ | 257.7 | 254.9 |
Ln–O4 | 255.8 | 252.9 |
Ln–O4′ | 258.4 | 257.7 |
Sb1–O1 | 192.2 | 193.3 |
Sb1–O3 | 204.5 | 204.5 |
Sb1–O4 | 209.3 | 209.7 |
Sb2–O2 | 192.6 | 192.7 |
Sb2–O3 | 210.3 | 212.0 |
Sb2–O4 | 205.7 | 204.0 |
Br–Sb1 | 328.8 | 327.9 |
Br–Sb1‘ | 329.7 | 328.6 |
Br–Sb1‘‘ | 360.6 | 358.7 |
Br–Sb1‘‘‘ | 360.8 | 358.8 |
Br–Sb2 | 318.4 | 318.3 |
Br–Sb2‘ | 337.5 | 337.0 |
Br–Sb2‘‘ | 344.8 | 343.9 |
Br–Sb2‘‘‘ | 367.2 | 366.2 |
Ion | Emission Line | Content (wt-%) | Normalized Content (at-%) | Theoretical Content (at-%) |
---|---|---|---|---|
Tb3+ | Lα | 28.0(8) | 12.3(3) | 12.31 |
Eu3+ | Lα | 0.43(7) | 0.20(3) | 0.19 |
Sb3+ | Lα | 43.2(7) | 25.0(4) | 25.00 |
Br− | Kα | 14.4(7) | 12.6(6) | 12.50 |
O2− | – | 11.6(9) | 49.9(9) | 50.00 |
Sample | λex/nm | λem/nm | A1 | τ1/s | A2 | τ2/s | τavg/s |
---|---|---|---|---|---|---|---|
TbSb2O4Br:Eu3+ | 257 | 611 | 34.11 | 3.08 × 10−3 | 65.89 | 1.09 × 10−3 | 2.3 × 10−3 |
464 | 611 | 0.8 × 10−3 | |||||
483 | 541 | 12.3 × 10−6 | |||||
GdSb2O4Br:Eu3+ | 257 | 611 | 22.88 | 4.12 × 10−3 | 77.12 | 1.04 × 10−3 | 3.5 × 10−3 |
464 | 611 | 33.45 | 2.87 × 10−3 | 66.55 | 7.74 × 10−4 | 2.1 × 10−3 | |
393 | 611 | 64.87 | 9.06 × 10−4 | 35.13 | 4.65 × 10−3 | 3.6 × 10−3 | |
TbSb2O4Br | 483 | 541 | 22.54 | 1.39 × 10−4 | 74.46 | 2.74 × 10−4 | 0.25 × 10−3 |
References
- Ledderboge, F.; Nowak, J.; Massonne, H.-J.; Förg, K.; Höppe, H.A.; Schleid, T. High-pressure investigations of yttrium(III) oxoarsenate(V): Crystal structure and luminescence properties of Eu3+-doped scheelite-type Y[AsO4] from xenotime-type precursors. J. Solid State Chem. 2018, 263, 65–71. [Google Scholar] [CrossRef]
- Siqueira, K.P.F.; Lima, P.P.; Ferreira, R.A.S.; Carlos, L.D.; Bittar, E.M.; Granado, E.; González, J.C.; Abelenda, A.; Moreira, R.L.; Dias, A. Lanthanide Orthoantimonate Light Emitters: Structural, Vibrational, and Optical Properties. Chem. Mater. 2014, 26, 6351–6360. [Google Scholar] [CrossRef]
- Li, C.; Hou, Z.; Zhang, C.; Yang, P.; Li, G.; Xu, Z.; Fan, Y.; Lin, J. Controlled Synthesis of Ln3+ (Ln = Tb, Eu, Dy) and V5+ Ion-Doped YPO4 Nano-/Microstructures with Tunable Luminescent Colors. Chem. Mater. 2009, 21, 4598–4607. [Google Scholar] [CrossRef]
- Bühler, G.; Feldmann, C. Microwave-assisted synthesis of luminescent LaPO4:Ce,Tb nanocrystals in ionic liquids. Angew. Chem. Int. Ed. 2006, 45, 4864–4867. [Google Scholar] [CrossRef]
- Dieke, G.H. Spectra and Energy Levels of Rare Earth Ions in Crystals; Interscience Publishers—John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Deng, T.; Yan, S.; Hu, J. A novel narrow band UV-B emitting phosphor-YPO4:Sb3+,Gd3+. J. Rare Earths 2016, 34, 137–142. [Google Scholar] [CrossRef]
- Ben Hamida, M.; Warns, C.; Wickleder, M.S. Syntheses and Crystal Structures of RE2As4O9 (RE = Nd, Sm): Oxo-Arsenates(III) according to RE4(As2O5)2(As4O8) Exhibiting the Cyclic As4O84– Anion. Z. Naturforsch. 2005, 60b, 1219–1223. [Google Scholar] [CrossRef]
- Kang, D.-H.; Schleid, T. Sm2As4O9: Ein ungewöhnliches Samarium(III)-Oxoarsenat(III) gemäß Sm4[As2O5]2[As4O8]. Z. Anorg. Allg. Chem. 2006, 632, 91–96. [Google Scholar] [CrossRef]
- Metzger, S.J.; Heymann, G.; Huppertz, H.; Schleid, T. La[AsO3]: Lanthanum Oxoarsenate(III) with K[ClO3]-Type Crystal Structure. Z. Anorg. Allg. Chem. 2012, 638, 1119–1122. [Google Scholar] [CrossRef]
- Ledderboge, F.; Metzger, S.J.; Heymann, G.; Huppertz, H.; Schleid, T. Dimorphic cerium(III) oxoarsenate(III) Ce[AsO3]. Solid State Sci. 2014, 37, 164–169. [Google Scholar] [CrossRef]
- Goerigk, F.C.; Schander, S.; Hamida, M.B.; Kang, D.-H.; Ledderboge, F.; Wickleder, M.S.; Schleid, T. Die monoklinen Seltenerdmetall(III)-Chlorid-Oxidoarsenate(III) mit der Zusammensetzung SE5Cl3[AsO3]4 (SE = La – Nd, Sm). Z. Naturforsch. 2019, 74b, 497–506. [Google Scholar] [CrossRef]
- Ben Hamida, M.; Wickleder, M.S. Nd5(AsO3)4Cl3: The First Oxo-Arsenate(III)-Chloride of the Lanthanides. Z. Anorg. Allg. Chem. 2006, 632, 2195–2197. [Google Scholar] [CrossRef]
- Goerigk, F.C.; Schleid, T.; Schander, S.; Wickleder, M. The Triclinic Lanthanoid(III) Halide Oxidoarsenates(III) Sm3Cl2[As2O5][AsO3] and Tm3Br2[As2O5][AsO3]. Z. Anorg. Allg. Chem. 2020, 646, 985–991. [Google Scholar] [CrossRef]
- Kang, D.-H.; Schleid, T. La3OCl[AsO3]2: Ein Lanthan-Oxidchlorid-Oxoarsenat(III) mit “Lone-Pair”-Kanalstruktur. Z. Anorg. Allg. Chem. 2007, 633, 1205–1210. [Google Scholar] [CrossRef]
- Yahia, H.B.; Pöttgen, R.; Rodewald, U.C. Crystal Structure of La3OBr[AsO3]2. Z. Naturforsch. 2010, 65, 1289–1292. [Google Scholar] [CrossRef] [Green Version]
- Yahia, H.B.; Rodewald, U.C.; Pöttgen, R. Non-centrosymmetric Ce3OCl[AsO3]2. Z. Naturforsch. 2009, 64b, 896–900. [Google Scholar] [CrossRef]
- Kang, D.-H.; Schleid, T. Ce5Cl3[AsO3]4: The Second Chloride Oxoarsenate(III) of the Lanthanides, but the First One with Proper Crystallography. Z. Kristallogr. 2007, 25, 98. [Google Scholar]
- Ok, K.M.; Gittens, A.; Zhang, L.; Halasyamani, P.S. Synthesis, structure and characterization of two new antimony oxides – LaSb3O9 and LaSb5O12: Formation of LaSb5O12 from the reaction of LaSb3O9 with Sb2O3. J. Mater. Chem. 2004, 14, 116–120. [Google Scholar] [CrossRef]
- Marcano, C.M.; Rasines, I.; Vegas, A.; Otero-Diaz, L.C. Crystal Growth and Crystal Structure of Gd3Sb5O12: A New Relation between the ccp and the Mn5Si3 and Apatite Structures. Z. Anorg. Allg. Chem. 1987, 555, 176–182. [Google Scholar] [CrossRef]
- Cascales, C.; Marcano, C.M.; Rasines, I.; Fernández, F.; Sáez-Puche, R. Synthesis and characterization of R3Sb5O12 (R = Nd, Sm Gd and Yb). J. Less-Common Met. 1989, 149, 63–66. [Google Scholar] [CrossRef]
- Garcia Casado, P.; Mendiola, A.; Rasines, I. Preparation and crystal data of cerium antimony(III) trioxide. Inorg. Chem. 1982, 21, 2902–2903. [Google Scholar] [CrossRef]
- Fernández, F.; Sáez-Puche, R.; Cascales, C.; Marcano, C.M.; Rasines, I. X-ray diffraction data and magnetic properties of the oxides R3Sb5O12 (R = Pr, Nd, Sm, Eu, Gd, Yb). J. Phys. Chem. Solids 1989, 50, 871–875. [Google Scholar] [CrossRef]
- Gukalova, A.G.; Tsejtlin, M.N. Crystal structure of lanthanum fluoroantimonite La5Sb4O12F3. Kristallografiya 1988, 33, 499–501. [Google Scholar]
- Goerigk, F.C. Synthese und Charakterisierung von Seltenerdmetall-Oxidoarsenaten und -antimonaten, sowie deren Anwendungsbezug. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2021. in preparation. [Google Scholar]
- Goerigk, F.C.; Schleid, T. Composition and Crystal Structure of SmSb2O4Cl Revisited—And the Analogy of Sm1.5Sb1.5O4Br. Z. Anorg. Allg. Chem. 2019, 645, 1079–1084. [Google Scholar] [CrossRef]
- Schmidt, M.; Oppermann, H.; Hennig, C.; Henn, R.W.; Gmelin, E.; Söger, N.; Binnewies, M. Untersuchungen zu Bismutseltenerdoxidhalogeniden der Zusammensetzung Bi2SEO4X (X = Cl, Br, I). Z. Anorg. Allg. Chem. 2000, 626, 125–135. [Google Scholar] [CrossRef]
- Schmidt, M.; Oppermann, H. Synthese und Kristallstruktur von Bi2ErO4I. Z. Anorg. Allg. Chem. 1999, 625, 544–546. [Google Scholar] [CrossRef]
- Aurivillius, B. Crystal structure of NdBi5O8Cl2. Single crystal investigations on Bi3O4Br and Bi12O17Cl2. Chem. Scr. 1984, 24, 125–129. [Google Scholar]
- Hahn, F. STOE X-AREA. In Software for Single-Crystal X-Ray Diffraction; Stoe & Cie GmbH: Darmstadt, Germany, 2018. [Google Scholar]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELX-97 Program Package for Single-Crystal Structure Solution and Refinement of X-Ray Diffraction Data; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Rodriguez-Carvaja, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B. 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Fullprof Suite. Crystallographic tools for Rietveld, profile matching & integrated intensity refinements of X-Ray and/or neutron data. Phys. B 1995, 55, 192. [Google Scholar]
- Roisnel, T.; Rodriguez-Carvajal, J. WinPLOTR: A Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum 1999, 378, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Le Bail, A. Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr. 2005, 20, 316–326. [Google Scholar] [CrossRef] [Green Version]
- Pouchou, J.-L.; Pichoir, F. A new model for quantitative X-ray microanalysis. Rech. Aerosp. 1984, 3, 167–192. [Google Scholar]
- Pouchou, J.-L.; Pichoir, F. Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PaP”. In Electron Probe Quantitation; Heinrich, K.F.J., Newbury, D.E., Eds.; Plenum Press: New York, NY, USA, 1991; pp. 31–75. [Google Scholar]
- PeakSight: CAMECA; Société par Actions Simplifiée (SAS): Gennevilliers, France, 2019.
- McCarthy, G.J. Crystal data on C-type terbium sesquioxide (Tb2O3). J. Appl. Crystallogr. 1971, 4, 399–400. [Google Scholar] [CrossRef]
- Hubbert-Paletta, E.; Müller-Buschbaum, H. Röntgenographische Untersuchung an Einkristallen von monoklinem Tb2O3. Z. Anorg. Allg. Chem. 1968, 363, 145–150. [Google Scholar] [CrossRef]
- Kohlmann, H.; Hein, C.; Kautenburger, R.; Hansen, T.C.; Ritter, C.; Doyle, S. Crystal structure of monoclinic samarium and cubic europium sesquioxides and bound coherent neutron scattering lengths of the isotopes 154Sm and 153Eu. Z. Kristallogr. 2016, 231, 517–523. [Google Scholar] [CrossRef]
- Yakel, H.L. A refinement of the crystal structure of monoclinic europium sesquioxide. Acta Crystallogr. 1979, B 35, 564–569. [Google Scholar] [CrossRef]
- Pires, A.M.; Davolos, M.R.; Paiva-Santos, C.O.; Stucchi, E.B.; Flor, J. New X-ray powder diffraction data and Rietveld refinement for Gd2O3 monodispersed fine spherical particles. J. Solid State Chem. 2003, 171, 420–423. [Google Scholar] [CrossRef]
- Atou, T.; Kusaba, K.; Fukuoka, K.; Kikuchi, M.; Syono, Y. Shock-induced phase transition of M2O3 (M = Sc, Y, Sm, Gd, and In-type compounds. J. Solid State Chem. 1990, 89, 378–384. [Google Scholar] [CrossRef]
- Svensson, C. The crystal structure of orthorhombic antimony trioxide, Sb2O3. Acta Crystallogr. 1974, B 30, 458–461. [Google Scholar] [CrossRef]
- Svensson, C. Refinement of the crystal structure of cubic antimony trioxide, Sb2O3. Acta Crystallogr. 1975, B 31, 2016–2018. [Google Scholar] [CrossRef] [Green Version]
- Charkin, D.O.; Zitzer, S.; Greiner, S.; Dorofeev, S.G.; Olenev, A.V.; Berdonosov, P.S.; Schleid, T.; Dolgikh, V.A. Synthesis, Structures, and Luminescent Properties of Sodium Rare-Earth Metal(III) Chloride Oxotellurates(IV), Na2Ln3Cl3[TeO3]4 (Ln = Sm, Eu, Gd, Tb, Dy, and Ho). Z. Anorg. Allg. Chem. 2017, 643, 1654–1660. [Google Scholar] [CrossRef] [Green Version]
- Zitzer, S.; Schleifenbaum, F.; Schleid, T. Na2Y3Cl3[TeO3]4: Synthesis, Crystal Structure and Spectroscopic Properties of the Bulk Material and its Luminescent Eu3+-doped Samples. Z. Naturforsch. 2014, 69b, 150–158. [Google Scholar] [CrossRef]
- Greiner, S.; Zitzer, S.; Strobel, S.; Berdonosov, P.S.; Schleid, T. The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu). Z. Kristallogr. 2020, 235, 341–352. [Google Scholar] [CrossRef]
- Edstrand, M.; Brodersen, R.; Sillén, L.G.; Linnasalmi, A.; Laukkanen, P. On the Crystal Structure of the Antimony Oxychloride Sb4O5Cl2 and Isomorphous Oxybromide. Acta Chem. Scand. 1947, 1, 178–203. [Google Scholar] [CrossRef]
- Mayerová, Z.; Johnsson, M.; Lidin, S. The structure of onoratoite, Sb8O11X2 (X = Cl, Br) revisited. Solid State Sci. 2006, 8, 849–854. [Google Scholar] [CrossRef]
- Lissner, F.; Schleid, T. Sb8O11Br2: Ein sauerstoffreiches Antimon(III)-Oxidbromid. Z. Kristallogr. 2001, 18, 157. [Google Scholar]
- Yu, Q.; Zeng, H.; Liu, Z.; Ren, J.; Chen, G.; Wang, Z.; Sun, L. Novel Sb3+/Eu3+ Co-doped phosphate luminescent glasses with adjustable emission. J. Alloys Compd. 2014, 590, 92–95. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Ma, H.; Timlin, C. Sb-, Dy-, and Eu-doped oxyfluoride silicate glasses for light emitting diodes. J. Alloys Compd. 2015, 647, 880–885. [Google Scholar] [CrossRef]
- Hui, Y.; Zhao, Y.; Zhao, S.; Gu, L.; Fan, X.; Zhu, L.; Zou, B.; Wang, Y.; Cao, X. Fluorescence of Eu3+ as a probe of phase transformation of zirconia. J. Alloys Compd. 2013, 573, 177–181. [Google Scholar] [CrossRef]
- Hoefdraad, H.E. The charge-transfer absorption band of Eu3+ in oxides. J. Solid State Chem. 1975, 15, 175–177. [Google Scholar] [CrossRef] [Green Version]
- Dorenbos, P. Journal of Physics: Condensed Matter Systematic behaviour in trivalent lanthanide charge transfer energies. J. Phys. Condens. Matter 2003, 15, 8417–8434. [Google Scholar] [CrossRef]
- Shi, X.; Li, J.-G.; Zhu, Q.; Li, X.; Sun, X. Hydrothermal assisted synthesis and photoluminescence of (Y1−xEux)2WO6 red phosphors. J. Alloys Compd. 2017, 695, 1984–1992. [Google Scholar] [CrossRef]
- Reisfeld, R.; Zigansky, E.; Gaft, M. Europium probe for estimation of site symmetry in glass films, glasses and crystals. Mol. Phys. 2004, 102, 1319–1330. [Google Scholar] [CrossRef]
- Avella, F.J.; Sovers, O.J.; Wiggins, C.S. Rare Earth Cathodoluminescence in InBO3 and Related Orthoborates. J. Electrochem. Soc. 1967, 114, 613. [Google Scholar] [CrossRef]
- Sá Ferreira, R.A.; Nobre, S.S.; Granadeiro, C.M.; Nogueira, H.I.S.; Carlos, L.D.; Malta, O.L. A theoretical interpretation of the abnormal 5D0→7F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. J. Lumin. 2006, 121, 561–567. [Google Scholar] [CrossRef]
- Zmojda, J.; Kochanowicz, M.; Miluski, P.; Baranowska, A.; Pisarski, W.A.; Pisarska, J.; Jadach, R.; Sitarz, M.; Dorosz, D. Optical Characterization of Nano- and Microcrystals of EuPO₄ Created by One-Step Synthesis of Antimony-Germanate-Silicate Glass Modified by P2O5. Materials 2017, 10, 1059. [Google Scholar] [CrossRef] [Green Version]
Compound | EuSb2O4Br | GdSb2O4Br | TbSb2O4Br |
---|---|---|---|
Crystal system | monoclinic | ||
Space group | P21/c (no. 14) | ||
a/pm | 895.69(2) | 895.67(2) | 894.56(2) |
b/pm | 791.90(2) | 789.27(2) | 785.84(2) |
c/pm | 790.46(2) | 788.44(2) | 784.25(2) |
β/° | 91.743(1) | 91.681(1) | 91.625(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goerigk, F.C.; Paterlini, V.; Dorn, K.V.; Mudring, A.-V.; Schleid, T. Synthesis and Crystal Structure of the Short LnSb2O4Br Series (Ln = Eu–Tb) and Luminescence Properties of Eu3+-Doped Samples. Crystals 2020, 10, 1089. https://doi.org/10.3390/cryst10121089
Goerigk FC, Paterlini V, Dorn KV, Mudring A-V, Schleid T. Synthesis and Crystal Structure of the Short LnSb2O4Br Series (Ln = Eu–Tb) and Luminescence Properties of Eu3+-Doped Samples. Crystals. 2020; 10(12):1089. https://doi.org/10.3390/cryst10121089
Chicago/Turabian StyleGoerigk, Felix C., Veronica Paterlini, Katharina V. Dorn, Anja-Verena Mudring, and Thomas Schleid. 2020. "Synthesis and Crystal Structure of the Short LnSb2O4Br Series (Ln = Eu–Tb) and Luminescence Properties of Eu3+-Doped Samples" Crystals 10, no. 12: 1089. https://doi.org/10.3390/cryst10121089