Direct Sulfoxidation of Aromatic Methyl Thioethers with Aryl Halides by Copper-Catalyzed C(sp3)–H Bond Activation
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. General Synthesis Methods of 3a–5f
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angew. Chem. Int. Ed. 2018, 57, 10034–10072. [Google Scholar] [CrossRef] [PubMed]
- Lenstra, D.C.; Vedovato, V.; Ferrer Flegeau, E.; Maydom, J.; Willis, M.C. One-pot sulfoxide synthesis exploiting a sulfinyl-dication equivalent generated from a DABSO/trimethylsilyl chloride sequence. Org. Lett. 2016, 18, 2086–2089. [Google Scholar] [CrossRef] [PubMed]
- Surmiak, S.K.; Doerenkamp, C.; Selter, P.; Peterlechner, M.; Schäfer, A.H.; Eckert, H.; Studer, A. Palladium Nanoparticle Loaded Bifunctional Silica Hybrid Material: Preparation and Applications as Catalyst in Hydrogenation Reactions. Chem.-A Eur. J. 2017, 23, 6019–6028. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, S.; Wang, B.; Li, B. The regioselective synthesis of 2-phosphinoylindoles via Rh (III)-catalyzed C–H activation. Org. Chem. Front. 2018, 5, 88–91. [Google Scholar] [CrossRef]
- Mishra, S.K.; Tripathi, G.; Kishore, N.; Singh, R.K.; Singh, A.; Tiwari, V.K. Drug development against tuberculosis: Impact of alkaloids. Eur. J. Med. Chem. 2017, 504–544. [Google Scholar] [CrossRef] [PubMed]
- Ntte, K.; Li, W.; Zhou, S.; Neumann, H.; Wu, X.F. Iron-catalyzed reduction of aromatic aldehydes with paraformaldehyde and H2O as the hydrogen source. Tetrahedron Lett. 2015, 56, 1118–1121. [Google Scholar] [CrossRef]
- Mukherjee, M.M.; Basu, N.; Ghosh, R. Iron (III) chloride modulated selective 1, 2-trans glycosylation based on glycosyl trichloroacetimidate donors and its application in orthogonal glycosylation. RSC Adv. 2016, 6, 105589–105606. [Google Scholar] [CrossRef]
- Weix, D.J. Methods and Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles. Accounts Chem. Res. 2015, 48, 1767–1775. [Google Scholar] [CrossRef] [PubMed]
- Dai, P.; Luo, K.; Yu, X.; Yang, W.-C.; Wu, L.; Zhang, W.-H. Tert-Butyl Nitrite Mediated Expeditious Methylsulfoxidation of Tetrazole-amines with DMSO: Metal-free Synthesis of Antifungal Active Methylsulfinyl-1H-tetrazole Derivatives. Adv. Synth. Catal. 2018, 360, 468–473. [Google Scholar] [CrossRef]
- Lyons, T.W.; Sanford, M.S. Palladium-Catalyzed Ligand-Directed C−H Functionalization Reactions. Chem. Rev. 2010, 110, 1147–1169. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shan, G.; Wang, L.; Rao, Y. Recent advances in transition metal (Pd, Ni)-catalyzed C(sp3)–H bond activation with bidentate directing groups. Tetrahedron Lett. 2016, 57, 819–836. [Google Scholar] [CrossRef]
- He, J.; Li, S.; Deng, Y. Ligand-Controlled C(sp3)–H Arylation and Olefination in Synthesis of Unnatural Chiral α–Amino Acids. Science 2014, 343, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.F.; Song, S.Q.; Xu, R.S. Iron(II)-catalyzed sulfur directed C(sp3)–H bond amination/C–S cross coupling reaction. Chem. Commun. 2017, 53, 2737–2739. [Google Scholar] [CrossRef] [PubMed]
- Scheer, A.M.; Eskola, A.J.; Osborn, D.L.; Sheps, L.; Taatjes, C.A. Resonance Stabilization Effects on Ketone Autoxidation: Isomer-Specific Cyclic Ether and Ketohydroperoxide Formation in the Low-Temperature (400–625 K) Oxidation of Diethyl Ketone. J. Phys. Chem. A 2016, 120, 8625–8636. [Google Scholar] [CrossRef] [PubMed]
- Prakash, G.S.; Shakhmin, A.; Glinton, K.E.; Rao, S.; Mathew, T.; Olah, G.A. Poly(N-vinylpyrrolidone)–H2O2 and poly(4-vinylpyridine)–H2O2 complexes: Solid H2O2 equivalents for selective oxidation of sulfides to sulfoxides and ketones to gem-dihydroperoxides. Green Chem. 2014, 16, 3616–3622. [Google Scholar] [CrossRef]
- Song, J.; Liu, Q.; Liu, H.; Jiang, X. Recent Advances in Palladium-Catalyzed Carboxylation with CO2. Eur. J. Org. Chem. 2018, 6, 696–713. [Google Scholar] [CrossRef]
- Caglioti, L.; Micskei, K.; Tacconi, L.; Zucchi, C.; Palyi, G. Carbon dioxide: A C-1 source for chemical industry. Chem. Today 2009, 27, 18–22. [Google Scholar]
Entry | Catalyst | Base | 1a:2a | 3a [%] b |
---|---|---|---|---|
1 | CuBr | DBU | 1:1 | nr |
2 | CuCO3 | DBU | 1:1 | 37 |
3 | CuSO4 | DBU | 1:1 | 45 |
4 | CuCl2 | DBU | 1:1 | 40 |
5 | CuBr2 | DBU | 1:1 | 56 |
6 | Cu(OAc)2 | DBU | 1:1 | 78 |
7 | Cu(OAc)2 | Imidazole | 1:1.2 | 31 |
8 | Cu(OAc)2 | Piperidine | 1:1.2 | 66 |
9 | Cu(OAc)2 | N,N-dimethylaniline | 1:1.2 | 51 |
10 | Cu(OAc)2 | tri-n-propylamine | 1:1.2 | nr |
11 | Cu(OAc)2 | DABCO h | 1:1.2 | 55 |
12 | Cu(OAc)2 | DBU | 1:1.2 | 87 |
13 | Cu(OAc)2 | DBU | 1:1.2 | 69 c |
14 | Cu(OAc)2 | DBU | 1:1.2 | 76 d |
15 | Cu(OAc)2 | DBU | 1:1.2 | 74 e |
16 | Cu(OAc)2 | DBU | 1:1.2 | 5 f |
17 | Cu(OAc)2 | DBU | 1:1.2 | 0 g |
Entry | 1 | 2 | 3 | Yield b (Yield c) |
---|---|---|---|---|
1 | 87 (83) | |||
2 | 83 (80) | |||
3 | 84 (81) | |||
4 | 93 (92) | |||
5 | 88 (87) | |||
6 | 90 (81) | |||
7 | 87 (83) | |||
8 | 81 (80) | |||
9 | 85 (79) | |||
10 | 80(77) | |||
11 | 75 (70) | |||
12 | 79 (74) | |||
13 | 74 (69) | |||
14 | 72 (65) |
Entry | 1 | 4 | 5 | Yield b (Yield c) |
---|---|---|---|---|
1 | 79 (70) | |||
2 | 87 (79) | |||
3 | 63 (54) | |||
4 | 90 (82) | |||
5 | 81(76) | |||
6 | 86 (78) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Zhu, Y.; Xiong, F.; Tong, S. Direct Sulfoxidation of Aromatic Methyl Thioethers with Aryl Halides by Copper-Catalyzed C(sp3)–H Bond Activation. Catalysts 2019, 9, 105. https://doi.org/10.3390/catal9010105
Xu R, Zhu Y, Xiong F, Tong S. Direct Sulfoxidation of Aromatic Methyl Thioethers with Aryl Halides by Copper-Catalyzed C(sp3)–H Bond Activation. Catalysts. 2019; 9(1):105. https://doi.org/10.3390/catal9010105
Chicago/Turabian StyleXu, Runsheng, Yueer Zhu, Feixiang Xiong, and Suli Tong. 2019. "Direct Sulfoxidation of Aromatic Methyl Thioethers with Aryl Halides by Copper-Catalyzed C(sp3)–H Bond Activation" Catalysts 9, no. 1: 105. https://doi.org/10.3390/catal9010105
APA StyleXu, R., Zhu, Y., Xiong, F., & Tong, S. (2019). Direct Sulfoxidation of Aromatic Methyl Thioethers with Aryl Halides by Copper-Catalyzed C(sp3)–H Bond Activation. Catalysts, 9(1), 105. https://doi.org/10.3390/catal9010105