Construction of Sulfur-Doped and Cyanide-Modified Carbon Nitride Photocatalysts with High Photocatalytic Hydrogen Production and Organic Pollutant Degradation
Abstract
1. Introduction
2. Results and Discussion
2.1. Material Characterizations and Structural Model Optimization
2.2. Photocatalytic Properties
2.2.1. Optical Properties and Band Structures
2.2.2. Characterization of Charge Separation
2.3. Photocatalytic Activity
2.3.1. Photocatalytic H2 Generation Performance
2.3.2. Photocatalytic Degradation of RhB
2.3.3. Photocatalytic Mechanism
3. Experimental Section
3.1. Materials
3.2. Preparation of Photocatalysts
3.2.1. Synthesis of CN
3.2.2. Synthesis of S-Doped and Cyanide-Modified Carbon Nitride Photocatalysts
3.3. Experimental
3.3.1. Characterizations
3.3.2. Electrochemical Testing
3.3.3. Photocatalytic Performance Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Wang, S. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coord. Chem. Rev. 2022, 453, 214338. [Google Scholar] [CrossRef]
- Qi, M.-Y.; Conte, M.; Anpo, M.; Tang, Z.-R.; Xu, Y.-J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, C.; Chen, Z.; Huang, H.; Liu, Y.; Xue, L.; Sun, J.; Wang, X.; Xiong, P.; Zhu, J. Recent advances in two-dimensional materials for hydrovoltaic energy technology. In Exploration; Wiley Online Library: Hoboken, NJ, USA, 2023; Volume 3, p. 20220061. [Google Scholar]
- Ma, X.; Cheng, H. Self-introduction of carbon nitride quantum dots into carbon nitride planar structure for enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2023, 339, 123101. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, F.; Liu, J.; Zhou, G.; Chen, D.; Liu, Z.; Fang, J. Design and Architecture of PO Co-Doped Porous g-C3N4 by Supramolecular Self-Assembly for Enhanced Hydrogen Evolution. Catalysts 2022, 12, 1583. [Google Scholar] [CrossRef]
- Idrees, F.; Dillert, R.; Bahnemann, D.; Butt, F.K.; Tahir, M. In-situ synthesis of Nb2O5/g-C3N4 heterostructures as highly efficient photocatalysts for molecular H2 evolution under solar illumination. Catalysts 2019, 9, 169. [Google Scholar] [CrossRef]
- Lange, T.; Reichenberger, S.; Ristig, S.; Rohe, M.; Strunk, J.; Barcikowski, S.; Schlögl, R. Zinc sulfide for photocatalysis: White angel or black sheep? Prog. Mater. Sci. 2022, 124, 100865. [Google Scholar] [CrossRef]
- Tao, X.; Zhou, H.; Zhang, C.; Ta, N.; Li, R.; Li, C. Triclinic-Phase Bismuth Chromate: A Promising Candidate for Photocatalytic Water Splitting with Broad Spectrum Ranges. Adv. Mater. 2023, 35, 2211182. [Google Scholar] [CrossRef]
- Nguyen, T.-B.; Huang, C.; Doong, R.-a.; Chen, C.-W.; Dong, C.-D. Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@ UCN) photocatalyst in water. Chem. Eng. J. 2020, 384, 123383. [Google Scholar] [CrossRef]
- Wang, X.; Qin, Y.; Lu, J.; Qin, W.; Teng, H. Incorporation of benzene rings and nickel atoms into g-C3N4 framework with enhanced spatial charge transfer for efficient photocatalysis. Sep. Purif. Technol. 2025, 362, 131659. [Google Scholar] [CrossRef]
- Liu, W.; Song, C.; Kou, M.; Wang, Y.; Deng, Y.; Shimada, T.; Ye, L. Fabrication of ultra-thin g-C3N4 nanoplates for efficient visible-light photocatalytic H2O2 production via two-electron oxygen reduction. Chem. Eng. J. 2021, 425, 130615. [Google Scholar] [CrossRef]
- An, W.; Ma, C.; Lu, J.; Wang, H.; Li, G.; Cui, W. Single-electron effects regulate the electronic structure of carbon nitride to enhance photocatalytic hydrogen peroxide generation and pollutant degradation performance. J. Colloid Interface Sci. 2025, 696, 137869. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Li, Y.; Peng, S.; Liu, B. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl. Catal. B Environ. 2020, 269, 118828. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, S.; Wang, S.; Tang, Z.; Bahnemann, J.; Liu, Y.; Chen, H.; Jiang, F. Conductive polymer/sulfur-doped graphitic carbon nitride with π-π conjugated structure for photocatalytic degradation of tetracycline in high and low salinity aquatic systems: Unveiling switching between free radical and non-radical pathways. J. Colloid Interface Sci. 2025, 692, 137548. [Google Scholar] [CrossRef]
- Li, H.; Zhang, N.; Zhao, F.; Liu, T.; Wang, Y. Facile fabrication of a novel Au/phosphorus-doped g-C3N4 photocatalyst with excellent visible light photocatalytic activity. Catalysts 2020, 10, 701. [Google Scholar] [CrossRef]
- Khan, I.; Khan, S.; Shayan, M.; Ullah, R.; Rizwan, M.; Khan, A.; Alodhayb, A.N.; Iqbal, A.; Iqbal, K.; Ullah, S. Simultaneous dopants and defects synergistically modulate the band structure of CN in Z-scheme heterojunctional photocatalysts for simultaneous HER and OER production. Carbon 2024, 229, 119451. [Google Scholar] [CrossRef]
- Peng, X.; Chen, X.; Pang, R.; Cheng, L.; Chen, F.; Lu, W. The Impact of Polymerization Atmosphere on the Microstructure and Photocatalytic Properties of Fe-Doped g-C3N4 Nanosheets. Catalysts 2024, 14, 520. [Google Scholar] [CrossRef]
- Ning, J.; Zhang, B.; Siqin, L.; Liu, G.; Wu, Q.; Xue, S.; Shao, T.; Zhang, F.; Zhang, W.; Liu, X. Designing advanced S-scheme CdS QDs/La-Bi2WO6 photocatalysts for efficient degradation of RhB. In Exploration; Wiley Online Library: Hoboken, NJ, USA, 2023; Volume 3, p. 20230050. [Google Scholar]
- Chen, J.; Wang, Y.; Yu, Y.; Wang, J.; Liu, J.; Ihara, H.; Qiu, H. Composite materials based on covalent organic frameworks for multiple advanced applications. In Exploration; Wiley Online Library: Hoboken, NJ, USA, 2023; Volume 3, p. 20220144. [Google Scholar]
- Mohammad, A.; Chandra, P.; Khan, M.E.; Choi, C.-H.; Yoon, T. Sulfur-doped graphitic carbon nitride: Tailored nanostructures for photocatalytic, sensing, and energy storage applications. Adv. Colloid Interface Sci. 2023, 322, 103048. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Gong, Z.; Ma, J.; Wang, K.; Zhu, H.; Li, K.; Xiong, L.; Guo, X.; Tang, J. Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water. Appl. Catal. B Environ. 2021, 284, 119742. [Google Scholar] [CrossRef]
- Cui, Y.; Li, X.; Yang, C.; Xiao, B.; Xu, H. K–I co-doped crystalline carbon nitride with outstanding visible light photocatalytic activity for H2 evolution. Int. J. Hydrogen Energy 2022, 47, 12569–12581. [Google Scholar] [CrossRef]
- Zhao, B.; Gao, D.; Liu, Y.; Fan, J.; Yu, H. Cyano group-enriched crystalline graphitic carbon nitride photocatalyst: Ethyl acetate-induced improved ordered structure and efficient hydrogen-evolution activity. J. Colloid Interface Sci. 2022, 608, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Razavi-Esfali, M.; Mahvelati-Shamsabadi, T.; Fattahimoghaddam, H.; Lee, B.-K. Highly efficient photocatalytic degradation of organic pollutants by mesoporous graphitic carbon nitride bonded with cyano groups. Chem. Eng. J. 2021, 419, 129503. [Google Scholar] [CrossRef]
- Dong, S.; Lee, G.; Zhou, R.; Wu, J.J. Synthesis of g-C3N4/BiVO4 heterojunction composites for photocatalytic degradation of nonylphenol ethoxylate. Sep. Purif. Technol. 2020, 250, 117202. [Google Scholar] [CrossRef]
- Liu, C.; Dong, S.; Chen, Y. Enhancement of visible-light-driven photocatalytic activity of carbon plane/g-C3N4/TiO2 nanocomposite by improving heterojunction contact. Chem. Eng. J. 2019, 371, 706–718. [Google Scholar] [CrossRef]
- Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017, 13, 1603938. [Google Scholar] [CrossRef]
- Zhao, H.; Li, G.; Tian, F.; Jia, Q.; Liu, Y.; Chen, R. g-C3N4 surface-decorated Bi2O2CO3 for improved photocatalytic performance: Theoretical calculation and photodegradation of antibiotics in actual water matrix. Chem. Eng. J. 2019, 366, 468–479. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, G.; Guo, H.; Wang, S.-A.; Wang, Q.; Fang, Y.; Hu, X.; Duan, R. Boron-doped polymeric carbon nitride co-modified with carbon-ring and carboxyl for efficient photocatalytic overall water-splitting. Chem. Eng. J. 2023, 470, 144199. [Google Scholar] [CrossRef]
- Zhang, Q.; Chai, Y.; Cao, M.; Yang, F.; Zhang, L.; Dai, W.-L. Facile synthesis of ultra-small Ag decorated g-C3N4 photocatalyst via strong interaction between Ag+ and cyano group in monocyanamide. Appl. Surf. Sci. 2020, 503, 143891. [Google Scholar] [CrossRef]
- Du, R.; Xiao, K.; Li, B.; Han, X.; Zhang, C.; Wang, X.; Zuo, Y.; Guardia, P.; Li, J.; Chen, J. Controlled oxygen doping in highly dispersed Ni-loaded g-C3N4 nanotubes for efficient photocatalytic H2O2 production. Chem. Eng. J. 2022, 441, 135999. [Google Scholar] [CrossRef]
- Luo, Y.; Deng, B.; Pu, Y.; Liu, A.; Wang, J.; Ma, K.; Gao, F.; Gao, B.; Zou, W.; Dong, L. Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation. Appl. Catal. B Environ. 2019, 247, 1–9. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, K.; Cui, M.; Liu, X.; Zhang, Q. Co-modification of carbon and cyano defect in g-C3N4 for enhanced photocatalytic peroxymonosulfate activation: Combined experimental and theoretical analysis. Sep. Purif. Technol. 2023, 316, 123844. [Google Scholar] [CrossRef]
- Liao, Z.; Li, C.; Shu, Z.; Zhou, J.; Li, T.; Wang, W.; Zhao, Z.; Xu, L.; Shi, L.; Feng, L. K–Na co-doping in crystalline polymeric carbon nitride for highly improved photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 26318–26328. [Google Scholar] [CrossRef]
- Lei, J.; Chen, B.; Lv, W.; Zhou, L.; Wang, L.; Liu, Y.; Zhang, J. Robust photocatalytic H2O2 production over inverse opal g-C3N4 with carbon vacancy under visible light. ACS Sustain. Chem. Eng. 2019, 7, 16467–16473. [Google Scholar] [CrossRef]
- Li, L.; Zeng, H.; Zhong, L.; Wu, H.; Zheng, J.; Zhou, Z.; Liu, J.; Tang, R.; Deng, Y.; Huang, Y. Tailoring a donor-acceptor structure in oxygen and cyano group co-modified carbon nitride for enhanced photocatalytic imidacloprid degradation. Chem. Eng. J. 2025, 518, 164671. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, Y.; Guo, W.; Wang, L.; Zhang, R.; Liu, Y.; Zhai, Y. Preparation of double-vacancy modified carbon nitride to greatly improve the activity of photocatalytic hydrogen generation. Appl. Surf. Sci. 2021, 560, 150029. [Google Scholar] [CrossRef]
- Lin, Q.; Li, Z.; Lin, T.; Li, B.; Liao, X.; Yu, H.; Yu, C. Controlled preparation of P-doped g-C3N4 nanosheets for efficient photocatalytic hydrogen production. Chin. J. Chem. Eng. 2020, 28, 2677–2688. [Google Scholar] [CrossRef]
- Liang, G.; Waqas, M.; Yang, B.; Xiao, K.; Li, J.; Zhu, C.; Zhang, J.; Duan, H. Enhanced photocatalytic hydrogen evolution under visible light irradiation by p-type MoS2/n-type Ni2P doped g-C3N4. Appl. Surf. Sci. 2020, 504, 144448. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Chen, J.; An, N.; Zhao, Y.; Wang, D.; Mao, Z. Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching. Int. J. Hydrogen Energy 2020, 45, 13939–13946. [Google Scholar] [CrossRef]
- Qi, K.; Lv, W.; Khan, I.; Liu, S.-y. Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating. Chin. J. Catal. 2020, 41, 114–121. [Google Scholar] [CrossRef]
- Yu, M.; Lin, H.; Zhang, Y.; Shu, W.; Wu, G.; Xing, W. Frustrated Lewis pairs on hollow flower-liked carbon nitride by phosphorous and tungsten co-doping to enhance photocatalytic performance. J. Mol. Struct. 2025, 1319, 139510. [Google Scholar] [CrossRef]
- Jang, D.; Lee, S.; Kwon, N.H.; Kim, T.; Park, S.; Jang, K.Y.; Yoon, E.; Choi, S.; Han, J.; Lee, T.-W. Preparation of carbon nitride nanotubes with P-doping and their photocatalytic properties for hydrogen evolution. Carbon 2023, 208, 290–302. [Google Scholar] [CrossRef]
- Gu, Y.; Han, Y.; Li, Y.; Zhang, L.; Wang, Z.; Li, Z. Phosphorylation promotes liquid-phase proton transfer and carrier separation for boosted photocatalytic hydrogen evolution over g-C3N4. Chem. Eng. J. 2024, 502, 158084. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, C.; Cao, J.; Tang, Q.; Li, M.; Kang, P.; Shi, C.; Ma, M. Ultrasonic-Assisted Synthesis of 2D α-Fe2O3@g-C3N4 Composite with Excellent Visible Light Photocatalytic Activity. Catalysts 2018, 8, 457. [Google Scholar] [CrossRef]
- Venkatachalam, A.; Martin Mark, J.A.; D, D.; J, R.; Jesuraj, J.p. Sunlight active photocatalytic studies of Fe2O3 based nanocomposites developed via two-pot synthesis technique. Inorg. Chem. Commun. 2021, 124, 108417. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Q.; Cui, D. Preparation and Photocatalytic Properties of g-C3N4/TiO2 Hybrid Composite. J. Mater. Sci. Technol. 2010, 26, 925–930. [Google Scholar] [CrossRef]
- Kolesnyk, I.; Kujawa, J.; Bubela, H.; Konovalova, V.; Burban, A.; Cyganiuk, A.; Kujawski, W. Photocatalytic properties of PVDF membranes modified with g-C3N4 in the process of Rhodamines decomposition. Sep. Purif. Technol. 2020, 250, 117231. [Google Scholar] [CrossRef]
- Tahir, M.B.; Sagir, M.; Zubair, M.; Rafique, M.; Abbas, I.; Shakil, M.; Khan, I.; Afsheen, S.; Hasan, A.; Ahmed, A. WO3 Nanostructures-Based Photocatalyst Approach Towards Degradation of RhB Dye. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1107–1113. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Zhai, B.; Liang, Y. Enhanced photocatalytic degradation of RhB by two-dimensional composite photocatalyst. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 429–435. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Zhang, Y.; Jian, N.; Han, L.; Lin, H.; Xing, W. Construction of Sulfur-Doped and Cyanide-Modified Carbon Nitride Photocatalysts with High Photocatalytic Hydrogen Production and Organic Pollutant Degradation. Catalysts 2025, 15, 849. https://doi.org/10.3390/catal15090849
Tang Y, Zhang Y, Jian N, Han L, Lin H, Xing W. Construction of Sulfur-Doped and Cyanide-Modified Carbon Nitride Photocatalysts with High Photocatalytic Hydrogen Production and Organic Pollutant Degradation. Catalysts. 2025; 15(9):849. https://doi.org/10.3390/catal15090849
Chicago/Turabian StyleTang, Yihan, Yichi Zhang, Ning Jian, Luxi Han, Huage Lin, and Weinan Xing. 2025. "Construction of Sulfur-Doped and Cyanide-Modified Carbon Nitride Photocatalysts with High Photocatalytic Hydrogen Production and Organic Pollutant Degradation" Catalysts 15, no. 9: 849. https://doi.org/10.3390/catal15090849
APA StyleTang, Y., Zhang, Y., Jian, N., Han, L., Lin, H., & Xing, W. (2025). Construction of Sulfur-Doped and Cyanide-Modified Carbon Nitride Photocatalysts with High Photocatalytic Hydrogen Production and Organic Pollutant Degradation. Catalysts, 15(9), 849. https://doi.org/10.3390/catal15090849