Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,050)

Search Parameters:
Keywords = photocatalytic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2575 KB  
Article
MoO3-Based Photocatalysts for the Depolymerization of Lignin Under UV-Vis Light
by Elena Teresa Palombella, Antonio Monopoli, Maria Chiara Sportelli, Federico Liuzzi, Isabella De Bari, Lucia D’Accolti and Cosimo Annese
Catalysts 2026, 16(1), 95; https://doi.org/10.3390/catal16010095 (registering DOI) - 16 Jan 2026
Abstract
In this explorative work, molybdenum trioxide (MoO3) and representative doped MoO3 materials, i.e., Cu-doped MoO3 (2% Cu, “Cu-MoO3”) and H-doped MoO3 (H0.31MoO3, “H-MoO3”), have been tested for the first time [...] Read more.
In this explorative work, molybdenum trioxide (MoO3) and representative doped MoO3 materials, i.e., Cu-doped MoO3 (2% Cu, “Cu-MoO3”) and H-doped MoO3 (H0.31MoO3, “H-MoO3”), have been tested for the first time as photocatalysts in the UV-vis light-driven depolymerization of lignin. The catalysts have been characterized by XRD, TEM, ATR-FTIR, and UV-vis DRS. Under the adopted conditions (UV-vis irradiation, solvent 0.01 M aqueous NaOH, lignin 200 ppm, catalyst 1 g/L, rt, 5 h), photocatalytic depolymerization of wheat-straw lignin (WSL) produced increasing amounts of bio-oil on changing the catalyst from pristine MoO3 to Cu-MoO3 and H-MoO3 (23%, 28% and 30%, respectively). Also, quantification of vanillin and vanillic acid shows a similar increasing trend. These results appear in line with the estimated band gap energies, which decrease in the order: MoO3 (2.91 eV) > Cu-MoO3 (2.86 eV) > H-MoO3 (2.77 eV). H-MoO3 shows the best catalytic performance, which was then fruitfully explored in the photocatalytic depolymerization of benchmark commercial Kraft lignin (bio-oil yield 32%, vanillin and vanillic acid yields 1.28% and 0.78%, respectively). In view of the results obtained, this work is expected to provide new ideas for the design of heterogeneous photocatalytic system for lignin cleavage. Full article
(This article belongs to the Special Issue Catalysts from Lignocellulose to Biofuels and Bioproducts)
Show Figures

Graphical abstract

15 pages, 5047 KB  
Article
Bismuth Oxychloride@Graphene Oxide/Polyimide Composite Nanofiltration Membranes with Excellent Self-Cleaning Performance
by Runlin Han, Faxiang Feng, Zanming Zhu, Jiale Li, Yiting Kou, Chaowei Yan and Hongbo Gu
Separations 2026, 13(1), 37; https://doi.org/10.3390/separations13010037 (registering DOI) - 16 Jan 2026
Abstract
Organic pollution poses a serious threat to global water safety, while traditional treatment technologies suffer from low efficiency, high costs, and secondary pollution issues. This study successfully develops a highly efficient separation and photocatalytic degradation composite bismuth oxychloride@graphene oxide/polyimide (BiOCl@GO/PI) membrane by loading [...] Read more.
Organic pollution poses a serious threat to global water safety, while traditional treatment technologies suffer from low efficiency, high costs, and secondary pollution issues. This study successfully develops a highly efficient separation and photocatalytic degradation composite bismuth oxychloride@graphene oxide/polyimide (BiOCl@GO/PI) membrane by loading GO and BiOCl photocatalysts onto PI supporting membrane. The results show that this composite membrane achieves a rejection of 99.8% for methylene blue (MB) and 87.6% for tetracycline hydrochloride (TC). Under UV irradiation, the membrane exhibits a retention rate decline of only 6.8% after five cycles, with water flux stably maintaining at 605 L m−2 h−1 bar−1. Compared to dark conditions, it demonstrates remarkable flux recovery. This is attributed to the membrane’s excellent photocatalytic degradation activity under UV irradiation. After five degradation cycles, the degradation efficiency is decreased from 97.5 to 88.3%. Studies on radical scavengers indicate that UV irradiation generates free radicals, thereby conferring excellent catalytic activity to the membrane. Its unique synergistic effect between separation and photocatalysis endows it with outstanding self-cleaning performance. This research provides an innovative integrated solution for antibiotic pollution control, demonstrating significant potential for environmental applications. Full article
(This article belongs to the Section Materials in Separation Science)
20 pages, 5021 KB  
Article
Bio-Inspired Reduced TiO2 Nanotube Photocatalyst Modified with Polydopamine and Silk Fibroin Quantum Dots for Enhanced UV and Visible-Light Photocatalysis
by Cristina Dumitriu, Simona Popescu, Roberta Miftode, Angela Gabriela Păun, Andreea Mădălina Pandele, Andrei Kuncser and Mihaela Mîndroiu
Materials 2026, 19(2), 358; https://doi.org/10.3390/ma19020358 - 16 Jan 2026
Abstract
Y-branched TiO2 nanotubes (NTs) were produced by anodizing titanium plates derived from aerospace production leftovers and subsequently engineered to develop an enhanced TiO2-based photocatalytic system. The NTs were electrochemically reduced to obtain reduced TiO2 nanotubes (rTN) with a narrowed [...] Read more.
Y-branched TiO2 nanotubes (NTs) were produced by anodizing titanium plates derived from aerospace production leftovers and subsequently engineered to develop an enhanced TiO2-based photocatalytic system. The NTs were electrochemically reduced to obtain reduced TiO2 nanotubes (rTN) with a narrowed bandgap, followed by surface modification with polydopamine (PD) and silk fibroin-derived quantum dots (QDs) to promote enhanced UV and visible-light photocatalysis for wastewater treatment. The QDs were hydrothermally synthesized from Bombyx mori silk fibroin. Scanning Electron Microscopy (SEM) revealed spherical QD agglomerates encapsulated within the PD layer, while Energy Dispersive X-ray Spectroscopy (EDX) confirmed the presence of carbon and nitrogen originating from both PD and QD. The resulting rNT/PD/QD photocatalyst exhibited a significantly reduced bandgap (1.03 eV), increased Urbach energy (1.35 eV), and moderate hydrophilicity. A high double-layer capacitance (Cdl) indicated an enlarged electrochemically active surface due to the combination of treatments. Electrochemical characterization demonstrated reduced electrical resistance, higher charge density, and lower electron–hole recombination, leading to improved interfacial charge transfer efficiency and electrochemical stability during multi-cycle cyclic voltammetry measurements. Preliminary photocatalytic tests show that the rNT/PD/QD photocatalyst achieved a degradation efficiency of 79.26% for methyl orange (MO) and 35% for tetracycline (TC). Full article
Show Figures

Graphical abstract

1 pages, 135 KB  
Correction
Correction: Yang et al. Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity. Nanomaterials 2024, 14, 2048
by Shuo Yang, Wenhui Li, Kaiyue Li, Ping Huang, Yuquan Zhuo, Keyan Liu, Ziwen Yang and Donglai Han
Nanomaterials 2026, 16(2), 115; https://doi.org/10.3390/nano16020115 - 15 Jan 2026
Abstract
In the original publication [...] Full article
14 pages, 1414 KB  
Article
Sustainable Photocatalytic Degradation of Ibuprofen Using Se-Doped SnO2 Nanoparticles Under UV–Visible Irradiation
by Luis Alamo-Nole and Cristhian Castro-Cedeño
AppliedChem 2026, 6(1), 7; https://doi.org/10.3390/appliedchem6010007 - 15 Jan 2026
Abstract
The increasing presence of pharmaceutical residues such as ibuprofen in aquatic environments represents a growing concern due to their persistence and limited biodegradability. In this study, selenium-doped tin oxide (SnO2:Se) nanoparticles covered with glycerol were synthesized via a microwave-assisted method to [...] Read more.
The increasing presence of pharmaceutical residues such as ibuprofen in aquatic environments represents a growing concern due to their persistence and limited biodegradability. In this study, selenium-doped tin oxide (SnO2:Se) nanoparticles covered with glycerol were synthesized via a microwave-assisted method to evaluate their photocatalytic performance in the degradation of ibuprofen under ultraviolet (UV) and visible light. Optimal synthesis parameters were determined at pH 7.5–8.0 and 130 °C, yielding stable, dark-brown colloidal suspensions. HRTEM analysis revealed a coexistence of one-dimensional (1D) nanowires and zero-dimensional (0D) quantum dots, confirming nanoscale morphology with crystallite sizes between 8 and 100 nm. EDS analysis confirmed the presence of Sn, O, and trace Se (0.1 wt%), indicating Se incorporation as a dopant. UV–Vis spectroscopy showed strong absorption near 324 nm and slight band-gap narrowing in the Se-doped samples, suggesting enhanced visible-light responsiveness. Photocatalytic experiments demonstrated an ibuprofen degradation efficiency of ~60% under visible light and 80% under UV irradiation with aeration, compared to only 5% removal using commercial SnO2. The enhanced performance was attributed to Se-induced band-gap modulation, effective charge-carrier separation, and singlet oxygen generation. Full article
Show Figures

Figure 1

35 pages, 4505 KB  
Review
Surface-Modified Magnetic Nanoparticles for Photocatalytic Degradation of Antibiotics in Wastewater: A Review
by Melissa Ariza Gonzalez, Supawitch Hoijang, Dang B. Tran, Quoc Minh Tran, Refia Atik, Rafiqul Islam, Sugandika Maparathne, Sujitra Wongthep, Ramtin Yarinia, Ruwanthi Amarasekara, Pailinrut Chinwangso and T. Randall Lee
Appl. Sci. 2026, 16(2), 844; https://doi.org/10.3390/app16020844 - 14 Jan 2026
Abstract
Recent advancements in nanotechnology and materials science have enabled the development of magnetic photocatalysts with improved efficiency, stability, and reusability, offering a promising approach for wastewater treatment. The integration of magnetic nanoparticles (MNPs) into photocatalytic processes has gained significant attention as a sustainable [...] Read more.
Recent advancements in nanotechnology and materials science have enabled the development of magnetic photocatalysts with improved efficiency, stability, and reusability, offering a promising approach for wastewater treatment. The integration of magnetic nanoparticles (MNPs) into photocatalytic processes has gained significant attention as a sustainable method for addressing emerging pollutants—such as antibiotics and pharmaceutical compounds—which pose environmental and public health risks, including the proliferation of antibiotic resistance. Surface modification techniques, specifically applied to MNPs, are employed to enhance their photocatalytic performance by improving surface reactivity, reducing nanoparticle agglomeration, and increasing photocatalytic activity under both visible and ultraviolet (UV) light irradiation. These modifications also facilitate the selective adsorption and degradation of target contaminants. Importantly, the modified nanoparticles retain their magnetic properties, allowing for facile separation and reuse in multiple treatment cycles via external magnetic fields. This review provides a comprehensive overview of recent developments in surface-modified MNPs for wastewater treatment, with a focus on their physicochemical properties, surface modification strategies, and effectiveness in the removal of antibiotics from aqueous environments. Furthermore, the review discusses advantages over conventional treatment methods, current limitations, and future research directions, emphasizing the potential of this technology for sustainable and efficient water purification. Full article
(This article belongs to the Special Issue Applications of Nanoparticles in the Environmental Sciences)
Show Figures

Figure 1

20 pages, 5228 KB  
Article
Hydrophobic Modification of Alginate Nanofibrous Membrane by Group IV Elements Ion Crosslinking
by Takuma Yamashita and Toshihisa Tanaka
Polymers 2026, 18(2), 221; https://doi.org/10.3390/polym18020221 - 14 Jan 2026
Abstract
Hydrophobic nanofiber membranes derived from the biopolymer alginate were fabricated by electrospinning followed by metal ion crosslinking, and their potential as oil-water separation membranes was primarily investigated. Sodium alginate (SA) was co-electrospun with polyethylene glycol and subsequently crosslinked using calcium chloride and group [...] Read more.
Hydrophobic nanofiber membranes derived from the biopolymer alginate were fabricated by electrospinning followed by metal ion crosslinking, and their potential as oil-water separation membranes was primarily investigated. Sodium alginate (SA) was co-electrospun with polyethylene glycol and subsequently crosslinked using calcium chloride and group IV metal ions (zirconium or titanium). Metal ion crosslinking changed the surface wettability of the nanofiber membranes, as confirmed by water contact angle measurements. Both zirconium- and titanium-crosslinked SA nanofiber membranes exhibited effective gravity-driven oil–water separation with complete water blocking. Although hydrophobic modification reduced direct water affinity, the resulting membranes retained residual adsorption capability toward methylene blue, indicating the presence of accessible internal polar sites. The adsorption behavior varied depending on the crosslinking ion. In addition, titanium-crosslinked membranes showed an auxiliary UV-assisted dye removal contribution under irradiation, arising from photoactive Ti species. These findings demonstrate that metal ion crosslinking provides a practical route for tuning the functional properties of alginate nanofiber membranes, with oil-water separation as the primary application and dye adsorption/photocatalysis as secondary functionalities. Full article
Show Figures

Figure 1

18 pages, 1453 KB  
Article
Refined Langmuir–Hinshelwood Kinetics for Heterogeneous Photocatalytic Systems: Analytical Closed-Form Solution, Enhanced Approximations and Experimental Validation
by Juan Francisco Ramos-Justicia, Ana Urbieta and Paloma Fernández
Physchem 2026, 6(1), 5; https://doi.org/10.3390/physchem6010005 - 14 Jan 2026
Viewed by 16
Abstract
This study takes a further step forward in the analytical treatment of Langmuir–Hinshelwood (LH) kinetics for heterogeneous catalysis by deriving its closed-form solution. Unlike previous studies, we present a general solution that does not impose severe restrictions on the experimental conditions. This solution [...] Read more.
This study takes a further step forward in the analytical treatment of Langmuir–Hinshelwood (LH) kinetics for heterogeneous catalysis by deriving its closed-form solution. Unlike previous studies, we present a general solution that does not impose severe restrictions on the experimental conditions. This solution not only recovers the typical first- and zeroth-order regimes but also enables the simultaneous determination of the reaction rate constant and absorption–desorption equilibrium constant, unlike the traditional approaches to this equation, which needed additional isotherm experiments. The final solution requires a fine mathematical treatment for its numerical implementation, but enhanced approximations of the closed-form solution overcome this problem without losing the main advantage of calculating both constants at the same time. A parameter called “critical time” has been introduced, whose calculation allows us to distinguish quantitatively between kinetic regimes. Finally, the validation of these approximations has been carried out with experiments on zinc oxide and anatase (TiO2) under different conditions. Anatase experiments undoubtedly show a first-order tendency, regardless the quantity of powder. On the other hand, the degradation regime of the ZnO case cannot be easily ascribed to the zeroth or first order by simple inspection, but the model can mathematically rule out the zeroth order and confirm that it undergoes first-order degradation. Full article
Show Figures

Graphical abstract

26 pages, 5522 KB  
Article
Green Synthesis of ZnO Nanoparticles: Effect of Synthesis Conditions on Their Size and Photocatalytic Activity
by Veronika Yu. Kolotygina, Arkadiy Yu. Zhilyakov, Maria A. Bukharinova, Ekaterina I. Khamzina and Natalia Yu. Stozhko
ChemEngineering 2026, 10(1), 15; https://doi.org/10.3390/chemengineering10010015 - 14 Jan 2026
Viewed by 22
Abstract
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles [...] Read more.
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles with the desired properties. This study shows that the antioxidant activity of the plant extracts used is a key parameter influencing the properties of the resulting ZnO nanoparticles. This conclusion is based on the results of nanoparticle synthesis with the use of various plant extracts. The antioxidant activity of the extracts increases in the following order: plum–gooseberry–black currant–strawberry–sea buckthorn. The synthesized ZnO nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The catalytic properties of ZnO nanoparticles were tested under the degradation of a synthetic methylene blue dye after exposure to UV light. We found that with an increase in the AOA of plant extracts, the size of the nanoparticles decreases, while their photocatalytic activity increases. The smallest (d = 13 nm), most uniform in size (polydispersity index 0.1), and most catalytically active ZnO nanoparticles with a small band gap (2.85 eV) were obtained using the sea buckthorn extract with the highest AOA, pH 10 of the reaction mixture and 0.1 M Zn(CH3COO)2∙2H2O as a precursor salt. ZnO nanoparticles synthesized in the sea buckthorn extract demonstrated the highest dye photodegradation efficiency (96.4%) compared with other nanoparticles. The established patterns demonstrate the “antioxidant activity–size–catalytic activity” triad can be considered as a practical guide for obtaining ZnO nanoparticles of a given size and with given properties for environmental remediation applications. Full article
Show Figures

Graphical abstract

29 pages, 1991 KB  
Article
Techno-Economic Assessment and Process Design Considerations for Industrial-Scale Photocatalytic Wastewater Treatment
by Hongliang Liu and Mingxia Song
Water 2026, 18(2), 221; https://doi.org/10.3390/w18020221 - 14 Jan 2026
Viewed by 29
Abstract
Industrial deployment of photocatalysis for recalcitrant wastewater treatment remains constrained by economic uncertainty and scale-up limitations. This study first reviews the current technological routes and application status of photocatalytic processes and then addresses the key obstacles through a quantitative techno-economic assessment (TEA) of [...] Read more.
Industrial deployment of photocatalysis for recalcitrant wastewater treatment remains constrained by economic uncertainty and scale-up limitations. This study first reviews the current technological routes and application status of photocatalytic processes and then addresses the key obstacles through a quantitative techno-economic assessment (TEA) of a full-scale (10,000 m3/d) photocatalytic wastewater treatment plant. A process-level model integrating mass- and energy-balance calculations with equipment sizing was developed for a 280 kW UVA-LED reactor using Pt/TiO2 as the benchmark catalyst. The framework quantifies capital (CAPEX) and operating (OPEX) expenditures and evaluates the overall economic performance of the photocatalytic treatment system. Sensitivity analysis reveals that the catalyst replacement interval and electricity tariffs are the principal economic bottlenecks, whereas improvements in catalyst performance alone provide limited cost leverage. Furthermore, the analysis indicates that supportive policy mechanisms such as carbon-credit incentives and electricity subsidies could substantially enhance economic feasibility. Overall, this work establishes a comprehensive integrated TEA framework for industrial-scale photocatalytic wastewater treatment, offering actionable design parameters and cost benchmarks to guide future commercialization. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

23 pages, 2493 KB  
Article
Production and Characterization of Novel Photocatalytic Materials Derived from the Sustainable Management of Agro-Food By-Products
by Christina Megetho Gkaliouri, Eleftheria Tsampika Laoudikou, Zacharias Ioannou, Sofia Papadopoulou, Vasiliki Anastasia Giota and Dimitris Sarris
Molecules 2026, 31(2), 300; https://doi.org/10.3390/molecules31020300 - 14 Jan 2026
Viewed by 31
Abstract
Porous photocatalysts from agricultural waste, i.e., apricot and peach shell, with titanium dioxide were prepared by a carbonaceous method, the adsorption and photocatalytic degradation and its kinetics about methylene blue (MB) were studied systematically. The properties of the prepared composite sorbents were characterized [...] Read more.
Porous photocatalysts from agricultural waste, i.e., apricot and peach shell, with titanium dioxide were prepared by a carbonaceous method, the adsorption and photocatalytic degradation and its kinetics about methylene blue (MB) were studied systematically. The properties of the prepared composite sorbents were characterized using Brunauer–Emmett–Teller, surface area, scanning electron microscopy, and energy dispersive spectroscopy analyses. Several key factors, including radiation, pH, temperature, initial MB concentration, contact time, and sorbent dosage, as well as photocatalytic activity were investigated. All the waste-TiO2 adsorbents showed improved adsorption and photodegradation performance compared to commercial charchoal-TiO2. The produced materials presented high specific surface areas especially those derived from apricot shell-TiO2 with a combination of type I and IV adsorption isotherms with a hysteresis loop indicating micro and mesopore structures. In addition, under UV radiation, the composite sorbents exhibited greater MB removal efficiency than non-radiated composite sorbents. The examined conditions have shown the best MB adsorption results at pH greater than 7.5, temperature 30 °C, contact time 120 min, initial concentration 0.5 mg/L MB, and sorbent dosage equal to 2.0 g/L C/MB. The total removal rate of MB is 98.5%, while the respective amount of commercial charcoal-TiO2 is equal to 75.0%. The kinetic model that best describes the experimental data of MB degradation from the photocatalytic materials is the pseudo-second order model. In summary, this work highlights the effectiveness and feasibility of transforming agricultural waste into carbonaceous composite sorbent for the removal of cationic dyes from wastewater. Future work will involve scaling up the synthesis of the catalyst and evaluating its performance using bed reactors for industrial processes. Full article
Show Figures

Graphical abstract

16 pages, 1415 KB  
Article
Sequential Phage Pretreatment and TiO2–Thyme Essential Oil Photocatalysis: A Synergistic Approach to Pseudomonas aeruginosa Biofilm Inhibition and Control
by Myriam Ben Said, Asma Chkir dit Jlizi, Nadra Ben-Haj-Amor, Latifa Bousselmi and Didier Orange
Water 2026, 18(2), 213; https://doi.org/10.3390/w18020213 - 14 Jan 2026
Viewed by 152
Abstract
This work introduces an original sequential bio-inspired strategy combining lytic phage pretreatment with TiO2–thyme essential oil (TEO) photocatalysis, achieving near-complete inhibition of both biofilm initiation and maturation. By simultaneously targeting planktonic cells, mature biofilms, and extracellular DNA (eDNA), this approach addresses [...] Read more.
This work introduces an original sequential bio-inspired strategy combining lytic phage pretreatment with TiO2–thyme essential oil (TEO) photocatalysis, achieving near-complete inhibition of both biofilm initiation and maturation. By simultaneously targeting planktonic cells, mature biofilms, and extracellular DNA (eDNA), this approach addresses key mechanisms involved in biofilm persistence. Pseudomonas aeruginosa ATCC 4114 was selected as the biological model due to its relevance in water distribution systems and its strong biofilm-forming ability. Experimental results showed that phage pretreatment alone inhibited biofilm formation by planktonic cells by up to 99.6% (inactivation rate constant k = 0.034 min−1) and weakened bacterial attachment in mature biofilms by 89.06% (k = 0.011 min−1). To further enhance photocatalytic efficacy, titanium dioxide (TiO2) was combined with TEO at 0.05% (v/v) as a bio-inspired photosensitizer. UV–Vis spectroscopy confirmed TiO2-TEO interactions that extended light absorption into the visible region (400–700 nm), thereby enhancing photocatalytic efficiency. This combination was designed to suppress residual biofilm development and disrupt extracellular DNA (eDNA), a critical component of biofilm structure and stability. The integrated approach involving phage pretreatment followed by TiO2–TEO (0.05%) photocatalysis achieved 99.99% inhibition of both biofilm initiation and maturation phases, with significantly increased kinetic parameters (A = 2.62 for planktonic cells and A = 3.65 for sessile cells; k = 0.076 min−1 and 0.063 min−1, respectively; p < 0.01). This study provides novel insights into water disinfection strategies using photocatalytic treatment, emphasizing the importance of monitoring post-treatment bacterial virulence factor expression. Full article
(This article belongs to the Special Issue Advances in Biological Technologies for Wastewater Treatment)
Show Figures

Graphical abstract

13 pages, 3745 KB  
Article
Development and Characterization of Chitosan-TiO2-Based Photocatalytic Membrane for Water Treatment: Applications on Methylene Blue Elimination
by Hamza En-nasri, Abdellatif Aarfane, Badreddine Hatimi, Najoua Labjar, Meryem Bensemlali, Abdoullatif Baraket, Mina Bakasse, Nadia Zine, Nicole Jaffrezic-Renault, Souad El Hajjaji and Hamid Nasrellah
Eng 2026, 7(1), 43; https://doi.org/10.3390/eng7010043 - 13 Jan 2026
Viewed by 149
Abstract
Photocatalytic membrane reactors (PMRs) are an innovative technology for water treatment, effectively combining membrane filtration and photocatalysis to enhance contaminant removal while enabling the regeneration of fouled membranes. In this study, a new porous film of chitosan that was impregnated with TiO2 [...] Read more.
Photocatalytic membrane reactors (PMRs) are an innovative technology for water treatment, effectively combining membrane filtration and photocatalysis to enhance contaminant removal while enabling the regeneration of fouled membranes. In this study, a new porous film of chitosan that was impregnated with TiO2 was developed and coated onto a ceramic support by spin coating to form a new porous immobilized PMR. The formed membrane was tested for two reasons: the removal of methylene blue dye by a dead-end filtration process and to demonstrate its ability to self-regenerate under UV exposure. The selective layer of the membrane was characterized using FTIR spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and water permeability tests. The results confirmed the formation of an amorphous film with no chemical interaction between chitosan and TiO2. The membrane exhibited an average water permeability of 10.72 L/m2·h·bar, classifying it as either ultrafiltration (UF) or nanofiltration (NF). Dead-end filtration of methylene blue (10 mg L−1) achieved 99% dye removal based on UV–vis analysis of the permeate, while flux declined rapidly due to fouling. Subsequent UV irradiation removed the deposited dye layer and restored approximately 50% of the initial flux, indicating partial self-regeneration. Overall, spin-coated chitosan–TiO2 layers on ceramic supports provide high dye removal and photocatalytically assisted flux recovery, and further work should quantify photocatalytic degradation during regeneration. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

8 pages, 3080 KB  
Proceeding Paper
Natural Zeolites-Supported Green-Synthesized CeO2@Polybenzimidazole Hybrid Materials for Dye Degradation
by Katerina Zaharieva, Silvia Dimova, Filip Ublekov and Hristo Penchev
Eng. Proc. 2025, 117(1), 24; https://doi.org/10.3390/engproc2025117024 - 13 Jan 2026
Viewed by 71
Abstract
Natural zeolites—clinoptilolite from Golobradovo and mordenite from Lyaskovets deposits, Bulgaria—were used for the preparation of zeolite-supported CeO2@Polybenzimidazole (PBI) hybrid materials, incorporating green-synthesized ceria using Veronica officinalis L extract. In order to prepare the hybrid composites, the zeolites/CeO2 were surface-impregnated with [...] Read more.
Natural zeolites—clinoptilolite from Golobradovo and mordenite from Lyaskovets deposits, Bulgaria—were used for the preparation of zeolite-supported CeO2@Polybenzimidazole (PBI) hybrid materials, incorporating green-synthesized ceria using Veronica officinalis L extract. In order to prepare the hybrid composites, the zeolites/CeO2 were surface-impregnated with an ethanolic KOH solution of meta-PBI, which served as a dispersant medium. The composites were investigated by WDXRF, PXRD, FTIR, POM, and TG. The materials were tested in the photocatalytic degradation of 5 ppm Reactive Black 5 dye under UV light. The higher degree of degradation (98%) was achieved using mordenite/CeO2@PBI as the photocatalyst compared to the clinoptilolite/CeO2@PBI (14%). Full article
Show Figures

Figure 1

15 pages, 4650 KB  
Article
Engineering Phosphorus Doping Graphitic Carbon Nitride for Efficient Visible-Light Photocatalytic Hydrogen Production
by Thi Chung Le, Truong Thanh Dang, Tahereh Mahvelati-Shamsabadi and Jin Suk Chung
Catalysts 2026, 16(1), 88; https://doi.org/10.3390/catal16010088 - 13 Jan 2026
Viewed by 169
Abstract
Modulating the electronic structure and surface properties of graphitic carbon nitride (g-C3N4) by chemically phosphorus doping is an effective strategy for improving its photocatalytic performance. However, in order to benefit from practical applications, the cost-effectiveness, efficiency, and optimization of [...] Read more.
Modulating the electronic structure and surface properties of graphitic carbon nitride (g-C3N4) by chemically phosphorus doping is an effective strategy for improving its photocatalytic performance. However, in order to benefit from practical applications, the cost-effectiveness, efficiency, and optimization of the doping level need to be investigated further. Herein, we report a structural doping of P into g-C3N4 by in situ polymerization of the mixture of dicyandiamide (DCDA) and phosphorus pentoxide (P2O5). As an alternative to previous studies that used complex organic phosphorus precursors or post-treatment strategies, this work proposed a one-pot thermal polycondensation method that is low-cost, scalable, and enables controlled phosphorus substitutions at carbon sites of the g-C3N4 heptazine structure. Most of the structural features of g-C3N4 were well retained after doping, but the electronic structures and light harvesting capacity had been effectively altered, which provided not only a much better charge separation but also an improvement in photocatalytic activity toward H2 evolution under irradiation of a simulated sunlight. The optimized sample with P-doping content of 9.35 at.% (0.5PGCN) exhibited an excellent photocatalytic performance toward H2 evolution, which is over 5 times higher than that of bulk g-C3N4. This work demonstrates a facile one-step in situ route for producing high-yield photocatalysts using low-cost commercial precursors, offering practical starting materials for studies in solar cells, polymer batteries, and photocatalytic applications. Full article
Show Figures

Graphical abstract

Back to TopTop