Strong and Hierarchical Ni(OH)2/Ni/rGO Composites as Multifunctional Catalysts for Excellent Water Splitting
Abstract
1. Introduction
2. Results and Discussions
2.1. Morphology Analysis
2.2. Microstructure Analysis
2.3. Electrochemical Activity and Stability
3. Experiment
3.1. Preparation of Ni/rGO Composite Catalyst
3.2. Preparation of Ni(OH)2/Ni/rGO Composite Catalyst
3.3. Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, H.; Song, A.; Zhang, P.; Sun, K.; Wang, J.; Sun, B.; Fan, Q.; Shao, G.; Chen, C.; Liu, H.; et al. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 2023, 35, 2210714. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Song, S.; Duanmu, M.; Tian, H.; Liu, H.; Qin, X.; Shao, G.; Wang, G. Recent progress of non-noble metallic heterostructures for the electrocatalytic hydrogen evolution. Small Sci. 2023, 3, 2300036. [Google Scholar] [CrossRef]
- Tian, H.; Song, A.; Tian, H.; Liu, J.; Shao, G.; Liu, H.; Wang, G. Single-atom catalysts for high-energy rechargeable batteries. Chem. Sci. 2021, 12, 7656–7676. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Huo, J.; Li, L.; Qu, J.; Zhao, Y.; Chen, W.; Liu, C.; Liu, H.; Wang, G. Recent advances in engineered Ru-based electrocatalysts for the hydrogen/oxygen conversion reactions. Adv. Energy Mater. 2022, 12, 2202119. [Google Scholar] [CrossRef]
- Huo, J.; Cao, X.; Tian, Y.; Li, L.; Qu, J.; Xie, Y.; Nie, X.; Zhao, Y.; Zhang, J.; Liu, H. Atomically dispersed Mn atoms coordinated with N and O within an N-doped porous carbon framework for boosted oxygen reduction catalysis. Nanoscale 2023, 15, 5448–5457. [Google Scholar] [CrossRef]
- Huo, J.; Shen, Z.; Cao, X.; Li, L.; Zhao, Y.; Liu, H.; Wang, G. Macro/micro-environment regulating carbon-supported single-atom catalysts for hydrogen/oxygen conversion reactions. Small 2022, 18, 2202394. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zhang, C.; Li, P.; Wang, D.; Zhang, X.; Wang, L.; Zou, J.; Li, G. Engineering oxygen vacancies on Tb-doped ceria supported Pt catalyst for hydrogen production through steam reforming of long-chain hydrocarbon fuels. Chin. J. Chem. Eng. 2024, 68, 181–192. [Google Scholar] [CrossRef]
- Bao, W.; Tang, Y.; Yu, J.; Yan, W.; Wang, C.; Li, Y.; Wang, Z.; Yang, J.; Zhang, L.; Yu, F. Si-doped ZnAl-LDH nanosheets by layer-engineering for efficient photoelectrocatalytic water splitting. Appl. Catal. B Environ. Energ. 2024, 346, 123706. [Google Scholar] [CrossRef]
- Chen, F.; Liu, H.; Yang, F.; Che, S.; Chen, N.; Xu, C.; Wu, N.; Sun, Y.; Yu, C.; Li, Y. Multifunctional electrocatalyst based on MoCoFe LDH nanoarrays for the coupling of high efficiency electro-fenton and water splitting process. Chem. Eng. J. 2023, 467, 143274. [Google Scholar] [CrossRef]
- Sun, H.; Song, S.; Xu, X.; Dai, J.; Yu, J.; Zhou, W.; Shao, Z.; Jung, W. Recent progress on structurally ordered materials for electrocatalysis. Adv. Energy Mater. 2021, 11, 2101937. [Google Scholar] [CrossRef]
- Fan, X.; Li, B.; Zhu, C.; Yan, F.; Zhang, X.; Chen, Y. Nitrogen and sulfur Co-doped carbon-coated Ni3S2/MoO2 nanowires as bifunctional catalysts for alkaline seawater electrolysis. Small 2024, 2309655. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Z.; Zhang, Z.; Meng, X. Fe/P dual-doping NiMoO4 with hollow structure for efficient hydrazine oxidation-assisted hydrogen generation in alkaline seawater. Appl. Catal. B Environ. Energy 2024, 347, 123805. [Google Scholar] [CrossRef]
- Ding, X.; Xiang, J.; Wan, Y.; Song, F. Elemental charge engineering in cobalt and cobalt-phosphide interface for enhanced oxygen evolution and urea oxidation reactions. ACS Appl. Energy Mater. 2024, 9, 695–701. [Google Scholar] [CrossRef]
- Kulkarni, R.; Lingamdinne, L.P.; Karri, R.R.; Momin, Z.H.; Koduru, J.R.; Chang, Y.Y. Catalytic efficiency of LDH@ carbonaceous hybrid nanocomposites towards water splitting mechanism: Impact of plasma and its significance on HER and OER activity. Coord. Chem. Rev. 2023, 497, 215460. [Google Scholar] [CrossRef]
- Ren, J.T.; Chen, L.; Tian, W.W.; Song, X.L.; Kong, Q.H.; Wang, H.Y.; Yuan, Z.Y. Rational synthesis of core-shell-structured nickel sulfide-based nanostructures for efficient seawater electrolysis. Small 2023, 19, 2300194. [Google Scholar] [CrossRef]
- Shankar Naik, S.; Theerthagiri, J.; Nogueira, F.S.; Lee, S.J.; Min, A.; Kim, G.A.; Maia, G.; Pinto, L.M.C.; Choi, M.Y. Dual-cation-coordinated CoFe-layered double-hydroxide nanosheets using the pulsed laser ablation technique for efficient electrochemical water splitting: Mechanistic screening by in situ/operando Raman and density functional theory calculations. ACS Catalysis 2023, 13, 1477–1491. [Google Scholar] [CrossRef]
- Chen, M.; Abazari, R.; Sanati, S.; Chen, J.; Sun, M.; Bai, C.; Kirillov, A.M.; Zhou, Y.; Hu, G. Compositional engineering of HKUST-1/sulfidized NiMn-LDH on functionalized MWCNTs as remarkable bifunctional electrocatalysts for water splitting. Carbon Energy 2023, 5, e459. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, T.; Song, Z.; Wu, Z.; Bai, S.; Liu, G.; Sun, X.; Wang, Y.; Hu, S.; Zheng, L.; et al. Atomic modulation of single dispersed Ir species on self-supported NiFe layered double hydroxides for efficient electrocatalytic overall water splitting. ACS Catalysis 2023, 13, 11195–11203. [Google Scholar] [CrossRef]
- Huo, J.M.; Ma, Z.L.; Wang, Y.; Cao, Y.J.; Jiang, Y.C.; Li, S.N.; Chen, Y.; Hu, M.C.; Zhai, Q.G. Monodispersed Pt sites supported on NiFe-LDH from synchronous anchoring and reduction for high efficiency overall water splitting. Small 2023, 19, 2207044. [Google Scholar] [CrossRef]
- Tan, L.; Wang, H.; Qi, C.; Peng, X.; Pan, X.; Wu, X.; Wang, Z.; Ye, L.; Xiao, Q.; Luo, W.; et al. Regulating Pt electronic properties on NiFe layered double hydroxide interface for highly efficient alkaline water splitting. Appl. Catal. B Environ. 2024, 342, 123352. [Google Scholar] [CrossRef]
- Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084. [Google Scholar] [CrossRef]
- Li, X.; Han, G.Q.; Liu, Y.R.; Dong, B.; Hu, W.H.; Shang, X.; Chai, Y.M.; Liu, C.G. NiSe@NiOOH core-shell hyacinth-like nanostructures on nickel foam synthesized by in situ electrochemical oxidation as an efficient electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 20057–20066. [Google Scholar] [CrossRef]
- Li, R.; Xu, H.; Yang, P.; Wang, D.; Li, Y. Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 2021, 13, 120. [Google Scholar] [CrossRef]
- Zhang, J.W.; Lv, X.W.; Ren, T.Z.; Wang, Z.; Bandosz, T.J.; Yuan, Z.Y. Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy Environ. 2022, 7, 1024–1032. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, L.; Gao, G.; Chen, H.; Wang, B.; Zhou, J.; Soo, M.T.; Hong, M.; Yan, X.; Qian, G.; et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Y.; Ni, B.; Li, H.; Wang, X. Fullerene-like nickel oxysulfide hollow nanospheres as bifunctional electrocatalysts for water splitting. Small 2017, 13, 1602637. [Google Scholar] [CrossRef]
- Rao, Y.; Wang, Y.; Ning, H.; Li, P.; Wu, M. Hydrotalcite-like Ni(OH)2 nanosheets in situ grown on nickel foam for overall water splitting. Appl. Mater. Interfaces 2016, 8, 33601–33607. [Google Scholar] [CrossRef]
- Yang, L.; Huang, L.; Yao, Y.; Jiao, L. In-situ construction of lattice-matching NiP2/NiSe2 heterointerfaces with electron redistribution for boosting overall water splitting. Appl. Catal. B Environ. 2021, 282, 119584. [Google Scholar] [CrossRef]
- Wu, T.; Xu, S.; Zhang, Z.; Luo, M.; Wang, R.; Tang, Y.; Wang, J.; Huang, F. Bimetal modulation stabilizing a metallic heterostructure for efficient overall water splitting at large current density. Adv. Sci. 2022, 9, 2202750. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Xia, M.; Li, Z.; Chen, Z.; Ma, Z.; Qin, X.; Shao, G. Ni nanoparticles supported on graphene layers: An excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J. Power Sources 2017, 347, 220–228. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Shi, P.; Li, Y.; Huang, L.; Mai, W.; Tan, S.; Cai, X. Growth of nickel(111) plane: The key role in nickel for further improving the electrochemical property of hexagonal nickel hydroxide-nickel & reduced graphene oxide composite. J. Power Sources 2014, 267, 356–365. [Google Scholar]
- Zhen, W.; Ma, J.; Lu, G. Small-sized Ni(111) particles in metal-organic frameworks with low over-potential for visible photocatalytic hydrogen generation. Appl. Catal. B Environ. 2016, 190, 12–25. [Google Scholar] [CrossRef]
- Liu, D.; Lu, Q.; Luo, Y.; Sun, X.; Asiri, A.M. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 2015, 7, 15122–15126. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Yue, X.; Zhang, W.; Yu, S.; Zhang, Y.; Wang, J.; Wang, J. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2016, 52, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Stern, L.A.; Feng, L.; Song, F.; Hu, X. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347–2351. [Google Scholar] [CrossRef]
- Tian, J.; Cheng, N.; Liu, Q.; Sun, X.; He, Y.; Asiri, A.M. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting. J. Mater. Chem. A 2015, 3, 20056–20059. [Google Scholar] [CrossRef]
- Morales-Guio, C.G.; Stern, L.A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569. [Google Scholar] [CrossRef]
- Armstrong, R.D.; Henderson, M. Impedance plane display of a reaction with an adsorbed intermediate. J. Electroanal. Chem. 1972, 39, 81–90. [Google Scholar] [CrossRef]
Composite Electrodes | b (mV dec−1) | j0 (mA cm−2) | Rs (Ω cm−2) | Rct (Ω cm−2) | η100 (mV) | η10 (mV) |
---|---|---|---|---|---|---|
Ni/rGO | 126.4 | 2.605 | 0.3835 | 4.064 | 196.0 | 62.01 |
Ni(OH)2/Ni/rGO-1 | 108.8 | 2.039 | 0.9214 | 3.799 | 183.5 | 64.69 |
Ni(OH)2/Ni/rGO-2 | 121.1 | 2.703 | 0.7225 | 2.993 | 176.8 | 68.67 |
Ni(OH)2/Ni/rGO-3 | 79.45 | 3.018 | 0.6030 | 2.106 | 161.7 | 41.00 |
Ni(OH)2/Ni/rGO-4 | 79.65 | 2.149 | 0.6797 | 2.570 | 171.6 | 51.00 |
Ni(OH)2/Ni/rGO-5 | 140.1 | 2.226 | 0.6584 | 5.632 | 200.5 | 91.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Song, A.; Lu, Y.; Duanmu, M.; Ma, Z.; Qin, X.; Shao, G. Strong and Hierarchical Ni(OH)2/Ni/rGO Composites as Multifunctional Catalysts for Excellent Water Splitting. Catalysts 2024, 14, 309. https://doi.org/10.3390/catal14050309
Wang L, Song A, Lu Y, Duanmu M, Ma Z, Qin X, Shao G. Strong and Hierarchical Ni(OH)2/Ni/rGO Composites as Multifunctional Catalysts for Excellent Water Splitting. Catalysts. 2024; 14(5):309. https://doi.org/10.3390/catal14050309
Chicago/Turabian StyleWang, Lixin, Ailing Song, Yue Lu, Manman Duanmu, Zhipeng Ma, Xiujuan Qin, and Guangjie Shao. 2024. "Strong and Hierarchical Ni(OH)2/Ni/rGO Composites as Multifunctional Catalysts for Excellent Water Splitting" Catalysts 14, no. 5: 309. https://doi.org/10.3390/catal14050309
APA StyleWang, L., Song, A., Lu, Y., Duanmu, M., Ma, Z., Qin, X., & Shao, G. (2024). Strong and Hierarchical Ni(OH)2/Ni/rGO Composites as Multifunctional Catalysts for Excellent Water Splitting. Catalysts, 14(5), 309. https://doi.org/10.3390/catal14050309