Catalytic Partial Oxidation of Methane to Methanol over Fe2O3/MWCNTs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Fe2O3/MWCNTs Characterization Experiments
2.1.1. Morphology
2.1.2. Crystalline Structure
2.1.3. XPS Analysis
2.1.4. FT-IR Analysis
2.1.5. Textural Properties Analysis
2.2. Parameter Optimization and Stability of the Fe2O3/MWCNTs Catalyst System
2.2.1. Effects of the Pressure of the Fe2O3/MWCNTs Catalyst System on the CPOM
2.2.2. Effects of the Fe2O3/MWCNTs Dosage of the Fe2O3/MWCNTs Catalyst System on the CPOM
2.2.3. Stability Analysis of Fe2O3/MWCNTs Catalyst System on the CPOM
2.3. Catalytic Mechanism Analysis of CPOM over I2-Fe2O3/MWCNTs
3. Experiments
3.1. Preparation of Fe2O3/MWCNTs Catalysts
3.2. Characterization of Catalysts
3.3. CPOM in the Liquid Phase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Zakaria, Z.; Kamarudin, S. Direct conversion technologies of methane to methanol: An overview. Renew. Sustain. Energy Rev. 2016, 65, 250–261. [Google Scholar] [CrossRef]
- Mansouri, S.; Benlounes, O.; Rabia, C.; Thouvenot, R.; Bettahar, M.; Hocine, S. Partial oxidation of methane over modified Keggin-type polyoxotungstates. J. Mol. Catal. A Chem. 2013, 379, 255–262. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Ferraria, A.; Rego, A.B.D.; Gonçalves, A.P.; Girão, A.V.; Correia, R.; Gasche, T.A.; Branco, J.B. Partial oxidation of methane over bimetallic copper–cerium oxide catalysts. J. Mol. Catal. A Chem. 2010, 320, 47–55. [Google Scholar] [CrossRef]
- Chawdhury, P.; Kumar, D.; Subrahmanyam, C. NTP reactor for a single stage methane conversion to methanol: Influence of catalyst addition and effect of promoters. Chem. Eng. J. 2019, 372, 638–647. [Google Scholar] [CrossRef]
- Raynes, S.; Shah, M.A.; Taylor, R.A. Direct conversion of methane to methanol with zeolites: Towards understanding the role of extra-framework d-block metal and zeolite framework type. Dalton Trans. 2019, 48, 10364–10384. [Google Scholar] [CrossRef] [PubMed]
- Dinh, K.T.; Sullivan, M.M.; Narsimhan, K.; Serna, P.; Meyer, R.J.; Dincă, M.; Román-Leshkov, Y. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeo-lites. J. Am. Chem. Soc. 2019, 141, 11641–11650. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-W.; Seo, H.J.; Kwon, O.-Y. Mesoporous silica-pillared titanosilicate as catalytic support for partial oxidation of methane. Microporous Mesoporous Mater. 2014, 195, 191–196. [Google Scholar] [CrossRef]
- Xie, J.; Jin, R.; Li, A.; Bi, Y.; Ruan, Q.; Deng, Y.; Zhang, Y.; Yao, S.; Sankar, G.; Ma, D.; et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 2018, 1, 889–896. [Google Scholar] [CrossRef]
- Ravi, M.; Ranocchiari, M.; van Bokhoven, J.A. The direct catalytic oxidation of methane to methanol-A critical assessment. Angew. Chem. Int. Ed. 2017, 56, 16464–16483. [Google Scholar] [CrossRef]
- Hannemann, S.; Grunwaldt, J.-D.; Lienemann, P.; Günther, D.; Krumeich, F.; Pratsinis, S.E.; Baiker, A. Combination of flame synthesis and high-throughput experimentation: The preparation of alumina-supported noble metal particles and their application in the partial oxidation of methane. Appl. Catal. A Gen. 2007, 316, 226–239. [Google Scholar] [CrossRef]
- András, G.; Rajkumar, M.; Ábel, A.; Efremova, A. Noble-metal-free and Pt nanoparticles-loaded, mesoporous oxides as efficient catalysts for CO2 hydrogenation and dry reforming with methane. J. CO2 Util. 2019, 32, 106–118. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, J.; Putaj, P.; Caps, V.; Lefebvre, F.; Pelletier, J.; Basset, J.-M. Catalytic oxidation of light alkanes (C1-C4) by heteropoly compounds. Chem. Rev. 2014, 114, 981–1019. [Google Scholar] [CrossRef] [PubMed]
- Min, J.-S.; Ishige, H.; Misono, M.; Mizuno, N. Low-temperature selective oxidation of methane into formic acid with H2O2 gas mixture catalyzed by bifunctional catalyst of palladium-heteropoly compound. J. Catal. 2001, 198, 116–121. [Google Scholar] [CrossRef]
- Chen, L.; Yang, B.; Zhang, X.; Dong, W.; Zhang, X. Methane partial oxidation in liquid phase using vanadium-containing heteropolyacid catalysts in oleum. Chin. J. Catal. 2006, 27, 462–464. [Google Scholar]
- Starokon, E.V.; Parfenov, M.V.; Arzumanov, S.S.; Pirutko, L.V.; Stepanov, A.G.; Panov, G.I. Oxidation of methane to methanol on the surface of FeZSM-5 zeolite. J. Catal. 2013, 300, 47–54. [Google Scholar] [CrossRef]
- Parfenov, M.V.; Starokon, E.V.; Pirutko, L.V.; Panov, G.I. Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite. J. Catal. 2014, 318, 14–21. [Google Scholar] [CrossRef]
- Xu, J.; Armstrong, R.D.; Shaw, G.; Dummer, N.F.; Freakley, S.J.; Taylor, S.H.; Hutchings, G.J. Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catal. Today 2016, 270, 93–100. [Google Scholar] [CrossRef]
- Dandu, N.K.; Reed, J.A.; Odoh, S.O. Performance of density functional theory for predicting methane-to-methanol conversion by a tri-copper complex. J. Phys. Chem. C 2018, 122, 1024–1036. [Google Scholar] [CrossRef]
- Michalkiewicz, B.; Kałucki, K.; Sośnicki, J.G. Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 2003, 215, 14–19. [Google Scholar] [CrossRef]
- Xie, Y.; Gao, M.; Zhang, H.; Zeng, S.; Zhao, X.; Zhao, Y.; Su, H.; Song, J.; Li, X.; Jia, Q. Improvement role of CNTs on catalytic performance in the CeO2/xCNTs-CuO catalysts. Int. J. Hydrogen Energy 2016, 41, 21979–21989. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, G.; Wang, Y. Tailoring catalytic performance of carbon nanotubes confined CuO CeO2 catalysts for CO preferential oxidation. Int. J. Hydrogen Energy 2018, 43, 18211–18219. [Google Scholar] [CrossRef]
- Tavasoli, A.; Anahid, S.; Nakhaeipour, A. Effects of confinement in carbon nanotubes on the performance and lifetime of Fischer-Tropsch iron nano catalysts. Iran. J. Chem. Chem. Eng. Int. Engl. Ed. 2010, 29, 1–12. [Google Scholar]
- Sanders, T.; Papas, P.; Veser, G. Supported nanocomposite catalysts for high-temperature partial oxidation of methane. Chem. Eng. J. 2008, 142, 122–132. [Google Scholar] [CrossRef]
- Song, Y.-M.; Wang, F.; Luo, S.-J.; Guo, R.-B.; Xu, D. Methane hydrate formation improved by water-soluble carbon nanotubes via π-π conjugated molecules functionalization. Fuel 2019, 243, 185–191. [Google Scholar] [CrossRef]
- Irani, M.; Jacobson, A.T.; Gasem, K.A.; Fan, M. Modified carbon nanotubes/tetraethylenepentamine for CO2 capture. Fuel 2017, 206, 10–18. [Google Scholar] [CrossRef]
- Akbarzadeh, H.; Abbaspour, M.; Salemi, S.; Nazarian, A. Formation of methane clathrates in carbon nanotubes: A molecular dynamics study. New J. Chem. 2018, 42, 7083–7095. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Chang, Z.; Sun, X.; Li, Y. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation. Catal. Commun. 2011, 12, 530–534. [Google Scholar] [CrossRef]
- Shahami, M.; Shantz, D.F. Zeolite acidity strongly influences hydrogen peroxide activation and oxygenate selectivity in the partial oxidation of methane over M,Fe-MFI (M: Ga, Al, B) zeolites. Catal. Sci. Technol. 2019, 9, 2945–2951. [Google Scholar] [CrossRef]
- Taran, O.P.; Yashnik, S.A.; Boltenkov, V.V.; Parkhomchuk, E.V.; Sashkina, K.A.; Ayusheev, A.B.; Babushkin, D.E.; Parmon, V.N. Formic Acid Production Via Methane peroxide oxidation over oxalic acid activated Fe-MFI catalysts. Top. Catal. 2019, 62, 491–507. [Google Scholar] [CrossRef]
- Chen, W.; Fan, Z.; Pan, X.; Bao, X. Effect of confinement in carbon nanotubes on the activity of Fischer−Tropsch iron catalyst. J. Am. Chem. Soc. 2008, 130, 9414–9419. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Han, Z.; Zhang, Y.; Yu, Y.; Kong, A.; Shan, Y. Origin of the ability of alpha-Fe2O3 mesopores to activate C-H bonds in methane. Chem. A Eur. J. 2016, 22, 2046–2050. [Google Scholar] [CrossRef] [PubMed]
- Davico, G.E. The Conversion of Methane to Methanol: A Reaction Catalyzed by I+ or I2+? J. Phys. Chem. A 2005, 109, 3433–3437. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.S.; Chen, L.Y.; Lu, R.X.; Tang, C.Q. Selective oxidation of methane to methanol with organic oxidants catalyzed by iodine in non-aqueous acetic acid medium. Appl. Mech. Mater. 2015, 723, 624–628. [Google Scholar] [CrossRef]
Samples | SBET [a] (m2/g) | VBJH [b] (cm3/g) | Dpore [c] (nm) |
---|---|---|---|
Pure Fe2O3 | 32.83 | 0.21 | 3.89 |
Pure MWCNTs | 152.48 | 1.95 | 52.67 |
Fe2O3/MWCNTs [d] | 168.82 | 0.52 | 10.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Zhang, Y.; Huang, Z.; Liu, J.; Sang, J.; Luan, Z.; Tian, W.; Gao, Y.; Zhang, X.; Ji, Y.; et al. Catalytic Partial Oxidation of Methane to Methanol over Fe2O3/MWCNTs. Catalysts 2024, 14, 134. https://doi.org/10.3390/catal14020134
Zhou Z, Zhang Y, Huang Z, Liu J, Sang J, Luan Z, Tian W, Gao Y, Zhang X, Ji Y, et al. Catalytic Partial Oxidation of Methane to Methanol over Fe2O3/MWCNTs. Catalysts. 2024; 14(2):134. https://doi.org/10.3390/catal14020134
Chicago/Turabian StyleZhou, Zhengqing, Yinghua Zhang, Zhian Huang, Jia Liu, Jinguo Sang, Zuochun Luan, Wei Tian, Yukun Gao, Xingyu Zhang, Yucheng Ji, and et al. 2024. "Catalytic Partial Oxidation of Methane to Methanol over Fe2O3/MWCNTs" Catalysts 14, no. 2: 134. https://doi.org/10.3390/catal14020134
APA StyleZhou, Z., Zhang, Y., Huang, Z., Liu, J., Sang, J., Luan, Z., Tian, W., Gao, Y., Zhang, X., Ji, Y., & Tang, T. (2024). Catalytic Partial Oxidation of Methane to Methanol over Fe2O3/MWCNTs. Catalysts, 14(2), 134. https://doi.org/10.3390/catal14020134