Dehydrogenation of Diethylene Glycol to Para-Dioxanone over Cu/SiO2 Catalyst: Effect of Structural and Surface Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dehydrogenation Performance of the Catalysts
2.2. Structural Properties of Catalysts
2.3. Surface Acid Properties of Catalysts
3. Experimental
3.1. Catalyst Preparation
3.2. Catalyst Characterizations
3.3. Catalytic Performance Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, K.L.; Jin, W.H.; Zhang, F.C.; Li, C.X.; Shen, H.J.; Ma, X.; Fan, X.Y.; Wang, M. Preparation and Characterization of Dioxanone and Poly(dioxanone). Adv. Mater. Res. 2013, 711, 22–25. [Google Scholar] [CrossRef]
- Guest, H.R.; Kiff, B.W. Process for the Production of 2-Paradioxanone. U.S. Patent 2,900,395, 18 August 1959. [Google Scholar]
- Mayhew, R.L.; Glickman, S.A. Preparation of 2-p-dioxanone by Dehydrogenating Diethylene Glycol in the Presence of Added Hydrogen. U.S. Patent 3,119,840, 28 January 1964. [Google Scholar]
- Hattori, N. Production of 2-p-Dioxanone. JP 10,120,675, 12 May 1998. [Google Scholar]
- Sun, Z.; Wu, Z.; Liu, J.; He, T.; Xu, J.; Qian, J.; He, M. Study on Al-modified Cu/SiO2 catalysts for dehydrogenation of diethylene glycol to para-dioxanone. Mod. Chem. Ind. 2022, 42, 175–180. [Google Scholar]
- Dong, X.; Ma, X.; Xu, H.; Ge, Q. Comparative study of silica-supported copper catalysts prepared by different methods: Formation and transition of copper phyllosilicate. Catal. Sci. Technol. 2016, 6, 4151–4158. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, W.; Rehman, M.U.; Liu, W.; Xu, Y.; Huang, H.; Wang, S.; Zhao, Y.; Mei, D.; Ma, X. Copper Phyllosilicate Nanotube Catalysts for the Chemosynthesis of Cyclohexane via Hydrodeoxygenation of Phenol. ACS Catal. 2022, 12, 4724–4736. [Google Scholar] [CrossRef]
- He, X.; Wang, Y.; Zhang, X.; Dong, M.; Wang, G.; Zhang, B.; Niu, Y.; Yao, S.; He, X.; Liu, H. Controllable in Situ Surface Restructuring of Cu Catalysts and Remarkable Enhancement of Their Catalytic Activity. ACS Catal. 2019, 9, 2213–2221. [Google Scholar] [CrossRef]
- Bian, Z.; Kawi, S. Preparation, characterization and catalytic application of phyllosilicate: A review. Catal. Today 2020, 339, 3–23. [Google Scholar] [CrossRef]
- Yue, H.; Zhao, Y.; Zhao, S.; Wang, B.; Ma, X.; Gong, J. A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nat. Commun. 2013, 4, 2339. [Google Scholar] [CrossRef]
- Di, W.; Cheng, J.; Tian, S.; Li, J.; Chen, J.; Sun, Q. Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Appl. Catal. A Gen. 2016, 510, 244–259. [Google Scholar] [CrossRef]
- Gong, J.; Yue, H.; Zhao, Y.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S.; Ma, X. Synthesis of Ethanol via Syngas on Cu/SiO 2 Catalysts with Balanced Cu 0–Cu+ Sites. J. Am. Chem. Soc. 2012, 134, 13922–13925. [Google Scholar] [CrossRef]
- Chen, C.; Lin, L.; Ye, R.; Huang, L.; Zhu, L.; Huang, Y.; Qin, Y.; Yao, Y. Construction of Cu-Ce composite oxides by simultaneous ammonia evaporation method to enhance catalytic performance of Ce-Cu/SiO2 catalysts for dimethyl oxalate hydrogenation. Fuel 2021, 290, 120083. [Google Scholar] [CrossRef]
- Du, H.; Ma, X.; Yan, P.; Jiang, M.; Zhao, Z.; Zhang, Z.C. Catalytic furfural hydrogenation to furfuryl alcohol over Cu/SiO2 catalysts: A comparative study of the preparation methods. Fuel Process. Technol. 2019, 193, 221–231. [Google Scholar] [CrossRef]
- Ye, R.-P.; Lin, L.; Yang, J.-X.; Sun, M.-L.; Li, F.; Li, B.; Yao, Y.-G. A new low-cost and effective method for enhancing the catalytic performance of Cu–SiO2 catalysts for the synthesis of ethylene glycol via the vapor-phase hydrogenation of dimethyl oxalate by coating the catalysts with dextrin. J. Catal. 2017, 350, 122–132. [Google Scholar] [CrossRef]
- Pokorny, T.; Vykoukal, V.; Machac, P.; Moravec, Z.; Scotti, N.; Roupcova, P.; Karaskova, K.; Styskalik, A. Ethanol Dehydrogenation over Copper-Silica Catalysts: From Sub-Nanometer Clusters to 15 nm Large Particles. ACS Sustain. Chem. Eng. 2023, 11, 10980–10992. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, E.; Hosaka, S.; Kobata, M.; Yamada, Y.; Sato, S. Vapor-Phase Oxidant-Free Dehydrogenation of 2,3- and 1,4-Butanediol over Cu/SiO2 Catalyst Prepared by Crown-Ether-Assisted Impregnation. Chemistry 2023, 5, 406–421. [Google Scholar] [CrossRef]
- Wang, Q.-N.; Shi, L.; Li, W.; Li, W.-C.; Si, R.; Schüth, F.; Lu, A.-H. Cu supported on thin carbon layer-coated porous SiO2 for efficient ethanol dehydrogenation. Catal. Sci. Technol. 2018, 8, 472–479. [Google Scholar] [CrossRef]
- Huang, Z.; Cui, F.; Xue, J.; Zuo, J.; Chen, J.; Xia, C. Cu/SiO2 catalysts prepared by hom- and heterogeneous deposition–precipitation methods: Texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1,2-propanediol. Catal. Today 2012, 183, 42–51. [Google Scholar] [CrossRef]
- Yu, J.; Yang, M.; Zhang, J.; Ge, Q.; Zimina, A.; Pruessmann, T.; Zheng, L.; Grunwaldt, J.-D.; Sun, J. Stabilizing Cu+ in Cu/SiO2 Catalysts with a Shattuckite-Like Structure Boosts CO2 Hydrogenation into Methanol. ACS Catal. 2020, 10, 14694–14706. [Google Scholar] [CrossRef]
- Smith, M.L.; Kumar, N.; Spivey, J.J. CO Adsorption Behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts Studied by in Situ DRIFTS. J. Phys. Chem. C 2012, 116, 7931–7939. [Google Scholar] [CrossRef]
- He, Z.; Lin, H.; He, P.; Yuan, Y. Effect of boric oxide doping on the stability and activity of a Cu–SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol. J. Catal. 2011, 277, 54–63. [Google Scholar] [CrossRef]
- Hadjiivanov, K.; Venkov, T.; Knözinger, H. FTIR Spectroscopic Study of CO Adsorption on Cu/SiO2: Formation of New Types of Copper Carbonyls. Catal. Lett. 2001, 75, 55–59. [Google Scholar] [CrossRef]
- Ma, B.; Pan, H.; Yang, F.; Liu, X.; Guo, Y.; Wang, Y. Efficient CO2 catalytic hydrogenation over CuOx–ZnO/silicalite-1 with stable Cu+ species. Catal. Sci. Technol. 2022, 12, 5850–5860. [Google Scholar] [CrossRef]
- Ding, T.; Tian, H.; Liu, J.; Wu, W.; Yu, J. Highly active Cu/SiO2 catalysts for hydrogenation of diethyl malonate to 1,3-propanediol. Chin. J. Catal. 2016, 37, 484–493. [Google Scholar] [CrossRef]
- Song, T.; Chen, W.; Qi, Y.; Lu, J.; Wu, P.; Li, X. Efficient synthesis of methanol and ethylene glycol via the hydrogenation of CO2-derived ethylene carbonate on Cu/SiO2 catalysts with balanced Cu+–Cu0 sites. Catal. Sci. Technol. 2020, 10, 5149–5162. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, J.; Meng, H.; Qin, X.; Huang, J.; Liang, Y.; Xiao, F.-S. Catalytic direct dehydrogenation of ethyl lactate to produce ethyl pyruvate over a synergetic Cu0/Cu+ interface. Appl. Catal. B Environ. 2023, 325, 122329. [Google Scholar] [CrossRef]
- Jiang, F.; Lan, T.; Sun, J.; Zhao, G.; Lu, Y. Core-shell Cu@SiO2/SiO2 catalyst for 1,6-hexanediol dehydrogenation to ε-caprolactone: High activity and stability from core-shell nanostructure. Nano Res. 2023, 16, 12270–12280. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Su, Z.; Wang, P.; Tan, T.; Xiao, F.-S. Low-Temperature Dehydration of Ethanol to Ethylene over Cu–Zeolite Catalysts Synthesized from Cu–Tetraethylenepentamine. Ind. Eng. Chem. Res. 2020, 59, 17300–17306. [Google Scholar] [CrossRef]
- Phung, T.K. Copper-based catalysts for ethanol dehydrogenation and dehydrogenative coupling into hydrogen, acetaldehyde and ethyl acetate. Int. J. Hydrog. Energy 2022, 47, 42234–42249. [Google Scholar] [CrossRef]
- Shan, J.; Liu, H.; Lu, K.; Zhu, S.; Li, J.; Wang, J.; Fan, W. Identification of the dehydration active sites in glycerol hydrogenolysis to 1,2-propanediol over Cu/SiO2 catalysts. J. Catal. 2020, 383, 13–23. [Google Scholar] [CrossRef]
- Gitis, K.M.; Neumoeva, G.E.; Isagulyants, G.V. Synthesis of 1,4-dioxene from diethylene glycol in the presence of bifunctional copper-containing catalysts. Effect of support on the selectivity of dioxene formation. Chem. Heterocycl. Compd. 1996, 32, 23–29. [Google Scholar] [CrossRef]
Catalyst | BET Specific Surface Area/m2·g−1 | Pore Volume/cm3·g−1 | Average Pore Size/nm | CuO Crystal Size a/nm | Cu Crystal Size a/nm | Cu Surface Area/ m2·g−1 | Cu Particle Size b/nm | Cu Dispersion/% |
---|---|---|---|---|---|---|---|---|
SiO2 | 402 | 0.93 | 7.5 | -- | -- | -- | -- | -- |
CuSi-dp | 248 | 0.80 | 10.8 | 9.7 | -- | -- | -- | -- |
CuSi-ae | 574 | 0.70 | 3.7 | -- | -- | -- | -- | -- |
CuSi-dp-r | 213 | 0.54 | 11.2 | -- | 18.6 | 14.5 | 13.4 | 7.1 |
CuSi-ae-r | 361 | 0.20 | 2.9 | -- | 4.3 | 46.1 | 4.1 | 22.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, K.; Wang, W.; Ye, Y.; Chen, L.; Wang, L.; Wang, J.; Zhu, J. Dehydrogenation of Diethylene Glycol to Para-Dioxanone over Cu/SiO2 Catalyst: Effect of Structural and Surface Properties. Catalysts 2024, 14, 20. https://doi.org/10.3390/catal14010020
Guo K, Wang W, Ye Y, Chen L, Wang L, Wang J, Zhu J. Dehydrogenation of Diethylene Glycol to Para-Dioxanone over Cu/SiO2 Catalyst: Effect of Structural and Surface Properties. Catalysts. 2024; 14(1):20. https://doi.org/10.3390/catal14010020
Chicago/Turabian StyleGuo, Kai, Wanmin Wang, Yingchun Ye, Liangfeng Chen, Limin Wang, Jian Wang, and Junhua Zhu. 2024. "Dehydrogenation of Diethylene Glycol to Para-Dioxanone over Cu/SiO2 Catalyst: Effect of Structural and Surface Properties" Catalysts 14, no. 1: 20. https://doi.org/10.3390/catal14010020
APA StyleGuo, K., Wang, W., Ye, Y., Chen, L., Wang, L., Wang, J., & Zhu, J. (2024). Dehydrogenation of Diethylene Glycol to Para-Dioxanone over Cu/SiO2 Catalyst: Effect of Structural and Surface Properties. Catalysts, 14(1), 20. https://doi.org/10.3390/catal14010020