Secondary Amines from Catalytic Amination of Bio-Derived Phenolics over Pd/C and Rh/C: Effect of Operation Parameters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface, Textural, and Morphologic Properties of Catalysts
2.2. Catalytic Experiments
Primary Reaction Pathways
2.3. Implications of Operational Conditions and Substrate Nature
Kinetic Implications of the Change in the Operation Parameters
2.4. Steric Effects of Alkyl-Phenolics
3. Materials and Methods
3.1. Catalysts and Reagents
3.2. Catalyst Characterization
3.3. Catalytic Conversion of Phenols
3.3.1. Product Identification
3.3.2. Products Quantification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Royer, J. Chiral Amine Synthesis. Methods, Developments and Applications. Edited by Thomas C. Nugent. Angew. Chem. Int. Ed. 2010, 49, 7841. [Google Scholar] [CrossRef]
- Salvatore, R.N.; Yoon, C.H.; Jung, K.W. Synthesis of secondary amines. Tetrahedron 2001, 57, 7785–7811. [Google Scholar] [CrossRef]
- Bähn, S.; Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.; Beller, M. The catalytic amination of alcohols. ChemCatChem 2011, 3, 1853–1864. [Google Scholar] [CrossRef]
- Galabov, B.; Nalbantova, D.; Schleyer, P.V.R.; Schaefer, H.F. Electrophilic Aromatic Substitution: New Insights into an Old Class of Reactions. Acc. Chem. Res. 2016, 49, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Dorel, R.; Grugel, C.P.; Haydl, A.M. The Buchwald–Hartwig Amination After 25 Years. Angew. Chem. Int. Ed. 2019, 58, 17118–17129. [Google Scholar] [CrossRef] [PubMed]
- Weissermel, K.; Arpe, H. Industrial Organic Chemistry; Wiley: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Ortega, M.; Gómez, D.; Manrique, R.; Reyes, G.; García-Sánchez, J.T.; Medrano, V.G.B.; Jiménez, R.; Arteaga-Pérez, L.E. Reductive amination of phenol over Pd-based catalysts: Elucidating the role of the support and metal nanoparticle size. React. Chem. Eng. 2022, 8, 47–63. [Google Scholar] [CrossRef]
- Zakzeski, J.; Bruijnincx, P.C.A.; Jongerius, A.L.; Weckhuysen, B.M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 2010, 110, 3552–3599. [Google Scholar] [CrossRef]
- Hiltunen, J.; Kuutti, L.; Rovio, S.; Puhakka, E.; Virtanen, T.; Ohra-Aho, T.; Vuoti, S. Using a low melting solvent mixture to extract value from wood biomass. Sci. Rep. 2016, 6, srep32420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S.S. Chemoselective metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 2013, 135, 6415–6418. [Google Scholar] [CrossRef]
- Lancefield, C.S.; Ojo, O.S.; Tran, F.; Westwood, N.J. Isolation of functionalized phenolic monomers through selective oxidation and CO bond cleavage of the β-O-4 linkages in Lignin. Angew. Chem. Int. Ed. 2015, 54, 258–262. [Google Scholar] [CrossRef]
- Nguyen, J.D.; Matsuura, B.S.; Stephenson, C.R.J. A photochemical strategy for lignin degradation at room temperature. J. Am. Chem. Soc. 2014, 136, 1218–1221. [Google Scholar] [CrossRef] [PubMed]
- Deuss, P.J.; Scott, M.; Tran, F.; Westwood, N.J.; de Vries, J.G.; Barta, K. Aromatic Monomers by in Situ Conversion of Reactive Intermediates in the Acid-Catalyzed Depolymerization of Lignin. J. Am. Chem. Soc. 2015, 137, 7456–7467. [Google Scholar] [CrossRef] [Green Version]
- Cuypers, T.; Morias, T.; Windels, S.; Marquez, C.; Van Goethem, C.; Vankelecom, I.; De Vos, D.E. Ni-Catalyzed reductive amination of phenols with ammonia or amines into cyclohexylamines. Green Chem. 2020, 22, 1884–1893. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, J.-S.; Li, C.-J. Formal aromaticity transfer for palladium-catalyzed coupling between phenols and pyrrolidines/indolines. Chem. Sci. 2017, 8, 6954–6958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zeng, H.; Gong, H.; Wang, H.; Li, C.-J. Palladium-catalyzed reductive coupling of phenols with anilines and amines: Efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. Chem. Sci. 2015, 6, 4174–4178. [Google Scholar] [CrossRef] [Green Version]
- Tomkins, P.; Valgaeren, C.; Adriaensen, K.; Cuypers, T.; De Vos, D.E. The Rhodium Catalysed Direct Conversion of Phenols to Primary Cyclohexylamines. ChemCatChem 2018, 10, 3689–3693. [Google Scholar] [CrossRef]
- Wang, X.; Arai, M.; Wu, Q.; Zhang, C.; Zhao, F. Hydrodeoxygenation of lignin-derived phenolics-a review on the active sites of supported metal catalysts. Green Chem. 2020, 22, 8140–8168. [Google Scholar] [CrossRef]
- Tomkins, P.; Valgaeren, C.; Adriaensen, K.; Cuypers, T.; De Vos, D.E. The impact of the nature of amine reactants in the palladium catalyzed conversion of phenol to N-substituted anilines. J. Catal. 2019, 371, 207–213. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Zou, J.; Ye, L.; Yuan, Y. Liquid-Phase Amination of Phenol to Aniline over the Pd/MgO Catalyst without External Hydrogen Addition. ACS Sustain. Chem. Eng. 2022, 10, 6988–6998. [Google Scholar] [CrossRef]
- Gomez, S.; Peters, J.A.; Maschmeyer, T. The Reductive Amination of Aldehydes and Ketones and the Hydrogenation of Nitriles: Mechanistic Aspects and Selectivity Control. Adv. Synth. Catal. 2002, 344, 1037–1057. [Google Scholar] [CrossRef]
- Arteaga-Pérez, L.E.; Manrique, R.; Ortega, M.; Castillo-Puchi, F.; Fraile, J.E.; Jiménez, R. Elucidating the Role of Rh/C on the Pathways and Kinetics of Ketone-to-Secondary Amines Reaction. ChemCatChem 2022, 14, e202101270. [Google Scholar] [CrossRef]
- Arteaga-Pérez, L.E.; Manrique, R.; Castillo-Puchi, F.; Ortega, M.; Bertiola, C.; Pérez, A.; Jiménez, R. One-pot amination of cyclohexanone-to-secondary amines over carbon-supported Pd: Unraveling the reaction mechanism and kinetics. Chem. Eng. J. 2021, 417, 129236. [Google Scholar] [CrossRef]
- Ortega, M.; Garrido-Lara, B.L.; Manrique, R.; Arteaga-Pérez, L.E. Dataset on the reductive amination of phenolics with cyclohexylamine over Rh/C and Pd/C: Catalysts characterization and reaction performance. Data Brief 2022, 45, 108620. [Google Scholar] [CrossRef] [PubMed]
- Ghampson, I.; Canales, R.; Escalona, N. A study of the hydrodeoxygenation of anisole over Re-MoOx/TiO2 catalyst. Appl. Catal. A Gen. 2018, 549, 225–236. [Google Scholar] [CrossRef]
- Chang, K.; Wang, T.; Chen, J.G. Hydrogenation of CO2 to methanol over CuCeTiOx catalysts. Appl. Catal. B 2017, 206, 704–711. [Google Scholar] [CrossRef]
- Zhang, D.; Jin, C.; Tian, H.; Xiong, Y.; Zhang, H.; Qiao, P.; Fan, J.; Zhang, Z.; Li, Z.Y.; Li, J. An: In situ TEM study of the surface oxidation of palladium nanocrystals assisted by electron irradiation. Nanoscale 2017, 9, 6327–6333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, G.; Li, W.; Shen, X.; Perez-Aguilar, J.M.; Chong, Y.; Gao, X.; Chai, Z.; Chen, C.; Ge, C.; Zhou, R. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. 2018, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Weng, H.; Shang, Y.; Ding, Z.; Yang, Z.; Cheng, S.; Lin, M. Environmentally friendly and facile synthesis of Rh nanoparticles at room temperature by alkaline ethanol solution and their application for ethanol electrooxidation. RSC Adv. 2017, 7, 3161–3169. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Chang, H.; Zhu, W.; Xu, C.; Feng, X. Rhodium Nanoparticle-mesoporous Silicon Nanowire Nanohybrids for Hydrogen Peroxide Detection with High Selectivity. Sci. Rep. 2015, 5, 7792. [Google Scholar] [CrossRef] [Green Version]
- Nelson, N.C.; Manzano, J.S.; Sadow, A.D.; Overbury, S.H.; Slowing, I.I. Selective Hydrogenation of Phenol Catalyzed by Palladium on High-Surface-Area Ceria at Room Temperature and Ambient Pressure. ACS Catal. 2015, 5, 2051–2061. [Google Scholar] [CrossRef] [Green Version]
- Jumde, V.R.; Petricci, E.; Petrucci, C.; Santillo, N.; Taddei, M.; Vaccaro, L. Domino Hydrogenation-Reductive Amination of Phenols, a Simple Process To Access Substituted Cyclohexylamines. Organ. Lett. 2015, 17, 3990–3993. [Google Scholar] [CrossRef]
- Chaudhari, C.; Sato, K.; Rumi, S.; Nishida, Y.; Shiraishi, M.; Nagaoka, K. Rh-PVP Catalyzed Reductive Amination of Phenols by Ammonia or Amines to Cyclohexylamines under Solvent-free Conditions. Chem. Lett. 2022, 51, 81–84. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, H.; Girard, S.A.; Wang, F.; Chen, N.; Li, C. Formal Direct Cross-Coupling of Phenols with Amines. Angew. Chem. Int. Ed. 2015, 54, 14487–14491. [Google Scholar] [CrossRef] [PubMed]
- Segobia, D.; Trasarti, A.; Apesteguía, C. Selective one-pot synthesis of asymmetric secondary amines via N-alkylation of nitriles with alcohols. J. Catal. 2019, 380, 178–185. [Google Scholar] [CrossRef]
- Ono, Y.; Ishida, H. Amination of phenols with ammonia over palladium supported on alumina. J. Catal. 1981, 72, 121–128. [Google Scholar] [CrossRef]
- Rylander, P. Catalytic Hydrogenation over Platinum Metals; Academic Press: Cambridge, MA, USA, 1967; pp. 503–529. ISBN 9780123955326. [Google Scholar] [CrossRef]
- Arteaga-Pérez, L.E.; Manrique, R.; Castillo-Puchi, F.; Ortega, M.; Bertiola, C.; Jiménez, R.; Pérez, A.J. Experimental protocol for the study of One-pot amination of Cyclohexanone-to-secondary amines over Carbon-supported Pd. MethodsX 2021, 8, 101406. [Google Scholar] [CrossRef]
- Bomben, K.D.; Moulder, J.F.; Sobol, P.E.; Stickle, W.F. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics: Eden Prairie, MN, USA, 1995. [Google Scholar]
- Cuypers, T.; Tomkins, P.; de Vos, D.E. Direct liquid-phase phenol-to-aniline amination using Pd/C. Catal. Sci. Technol. 2018, 8, 2519–2523. [Google Scholar] [CrossRef]
Catalyst | Metal Content a (%wt.) | Surface Area SBET (m2g−1) | Pore Volume (cm3g−1) | Particle Size b (nm) | Total Acidity c (10−3µmolNH3 m−2g−1) |
---|---|---|---|---|---|
Pd/C | 10.7 ± 0.5 | 832 ± 1.4 | 0.58 ± 0.2 | 3.3 ± 1.1 | 8.9 ± 0.4 |
Rh/C | 5.7 ± 1.2 | 854 ± 0.8 | 0.52 ± 0.4 | 2.5 ± 2.1 | 14.1 ± 2.3 |
No. | Catalyst (Me Eqs) | PhOH (mol/L) | CyA (Eqvs.) | H2 (bar) | Conversion (%) | Selectivity (%) |
---|---|---|---|---|---|---|
1 | n.n. | 0.20 | 1.40 | 1.5 | XCyA = 3% XPhOH = 5% | SImine = 100% |
2 | C | 0.20 | 1.40 | 1.5 | XCyA = 6% XPhOH = 8% | SCyO = 20% SImine = 90% |
3 | Rh/C | 0.0 | 1.40 | 1.5 | XCyA = 94% | SDCyA = 100% |
4 | Rh/C | 0.20 | 0.0 | 1.5 | XPhOH = 100% | SCyO = 100% |
5 | Rh/C | 0.20 | 1.40 | 0.0 | XCyA = 97% XPhOH = 24% | SDCyA = 78% SCyPhA = 2% SCyO = 20% |
6 | Rh/C | 0.20 | 1.40 | 1.5 | XCyA = 86% XPhOH = 100% | SDCyA = 64% SCyPhA = 0% SImine = 36% |
Initial Temperature | Hold | Ramp | Final Temperature |
---|---|---|---|
45 °C | 1 min | 1.5 °C min−1 | 50 °C |
50 °C | 1.5 min | 2 °C min−1 | 100 °C |
100 °C | 5 min | 10 °C min−1 | 250 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega, M.; Manrique, R.; Jiménez, R.; Parreño, M.; Domine, M.E.; Arteaga-Pérez, L.E. Secondary Amines from Catalytic Amination of Bio-Derived Phenolics over Pd/C and Rh/C: Effect of Operation Parameters. Catalysts 2023, 13, 654. https://doi.org/10.3390/catal13040654
Ortega M, Manrique R, Jiménez R, Parreño M, Domine ME, Arteaga-Pérez LE. Secondary Amines from Catalytic Amination of Bio-Derived Phenolics over Pd/C and Rh/C: Effect of Operation Parameters. Catalysts. 2023; 13(4):654. https://doi.org/10.3390/catal13040654
Chicago/Turabian StyleOrtega, Maray, Raydel Manrique, Romel Jiménez, Miriam Parreño, Marcelo E. Domine, and Luis E. Arteaga-Pérez. 2023. "Secondary Amines from Catalytic Amination of Bio-Derived Phenolics over Pd/C and Rh/C: Effect of Operation Parameters" Catalysts 13, no. 4: 654. https://doi.org/10.3390/catal13040654