CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphology and Structure Analysis
2.2. FTIR and XRD Analysis
2.3. XPS Analysis and Mott–Schottky Test
2.4. UV-vis and PL Analysis
2.5. Photocatalytic Degradation Performance
2.6. Photocatalytic Degradation Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of CZC@PAN
3.2.1. Preparation of CZ-NPs-CNFMs
3.2.2. Preparation of CQD Solution and Growth Solution
3.2.3. Preparation of CZC@PAN
3.3. Measurement and Characterization
3.4. Photocatalytic Degradation Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wen, X.J.; Shen, C.-H.; Fei, Z.H.; Fang, D.; Liu, Z.T.; Dai, J.T.; Niu, C.G. Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application. Chem. Eng. J. 2020, 383, 123083. [Google Scholar] [CrossRef]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, S.; Chen, P.; Li, F.; Hu, X.; Hua, T. Photocatalytic and antifouling properties of TiO2-based photocatalytic membranes. Mater. Today Chem. 2022, 23, 100650. [Google Scholar] [CrossRef]
- Zhang, T.; Dai, Z.; Liang, B.; Mu, Y. Facile Synthesis of SnO2/SiC nanosheets for photocatalytic degradation of MO. J. Inorg. Organomet. Polym. Mater. 2021, 31, 303–310. [Google Scholar] [CrossRef]
- Xu, H.; Fang, W.; Xu, L.; Liu, F. Batch preparation of CuO/ZnO-loaded nanofiber membranes for photocatalytic degradation of organic dyes. Langmuir 2020, 36, 14189–14202. [Google Scholar] [CrossRef]
- Długosz, O.; Wąsowicz, N.; Szostak, K.; Banach, M. Photocatalytic properties of coating materials enriched with bentonite/ZnO/CuO nanocomposite. Mater. Chem. Phys. 2021, 260, 124150. [Google Scholar] [CrossRef]
- Cheng, X.; Li, L.; Jia, L.; Cai, H.; Wang, X.; Ding, Y.; Fan, X. Preparation of K+ doped ZnO nanorods with enhanced photocatalytic performance under visible light. J. Phys. D Appl. Phys. 2019, 53, 035301. [Google Scholar] [CrossRef]
- Liu, H.; Gu, H.; Li, G.; Li, N. Fabrication of PAN/Ag/ZnO microporous membrane and examination of visible light photocatalytic performance. Fiber Polym. 2021, 22, 306–313. [Google Scholar] [CrossRef]
- Xu, M.; Wang, H.; Wang, G.; Zhang, L.; Liu, G.; Zeng, Z.; Ren, T.; Zhao, W.; Wu, X.; Xue, Q. Study of synergistic effect of cellulose on the enhancement of photocatalytic activity of ZnO. J. Mater. Sci. 2017, 52, 8472–8484. [Google Scholar] [CrossRef]
- Sabouni, R.; Gomaa, H. Photocatalytic degradation of pharmaceutical micro-pollutants using ZnO. Environ. Sci. Pollut. Res. 2019, 26, 5372–5380. [Google Scholar] [CrossRef]
- Kayaci, F.; Vempati, S.; Ozgit-Akgun, C.; Biyikli, N.; Uyar, T. Enhanced photocatalytic activity of homoassembled ZnO nanostructures on electrospun polymeric nanofibers: A combination of atomic layer deposition and hydrothermal growth. Appl. Catal. B Environ. 2014, 156–157, 173–183. [Google Scholar] [CrossRef]
- Li, S.; Chu, D.; Wang, L.; Rong, R.; Zhang, N. One-step hydrothermal synthesis of CuO hollow spheres with high photocatalytic activity. Phys. E 2021, 126, 114489. [Google Scholar] [CrossRef]
- Xu, L.; Su, J.; Zheng, G.; Zhang, L. Enhanced photocatalytic performance of porous ZnO thin films by CuO nanoparticles surface modification. Mater. Sci. Eng. B 2019, 248, 114405. [Google Scholar] [CrossRef]
- Liang, H.; Tai, X.; Du, Z.; Yin, Y. Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater. Opt. Mater. 2020, 100, 109674. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Xue, J.; Xue, G.; Sheng, X.; Wang, H.; Huo, P.; Yan, Y. CQDS preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. J. Catal. 2019, 369, 450–461. [Google Scholar] [CrossRef]
- Behnood, R.; Sodeifian, G. Synthesis of N doped-CQDs/Ni doped-ZnO nanocomposites for visible light photodegradation of organic pollutants. J. Environ. Chem. Eng. 2020, 8, 103821. [Google Scholar] [CrossRef]
- Ding, D.; Lan, W.; Yang, Z.; Zhao, X.; Chen, Y.; Wang, J.; Zhang, X.; Zhang, Y.; Su, Q.; Xie, E. A simple method for preparing ZnO foam/carbon quantum dots nanocomposite and their photocatalytic applications. Mater. Sci. Semicond. Process. 2016, 47, 25–31. [Google Scholar] [CrossRef]
- Gao, D.; Zhao, P.; Lyu, B.; Li, Y.; Hou, Y.; Ma, J. Carbon quantum dots decorated on ZnO nanoparticles: An efficient visible-light responsive antibacterial agents. Appl. Organomet. Chem. 2020, 34, e5665. [Google Scholar] [CrossRef]
- Zhang, J.; An, X.; Li, X.; Liao, X.; Nie, Y.; Fan, Z. Enhanced antibacterial properties of the bracket under natural light via decoration with ZnO/carbon quantum dots composite coating. Chem. Phys. Lett. 2018, 706, 702–707. [Google Scholar] [CrossRef]
- Vyas, Y.; Chundawat, P.; Dharmendra; Punjabi, P.B.; Ameta, C. Green and facile synthesis of luminescent CQDs from pomegranate peels and its utilization in the degradation of azure B and amido black 10B by decorating it on CuO nanorods. ChemistrySelect 2021, 6, 8566–8580. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, L.; Lu, L.; Xu, X.; Jiang, Y. Enhanced photocatalytic properties of ZnO/Al2O3 nanorod heterostructure. Mater. Res. Express 2021, 8, 045505. [Google Scholar] [CrossRef]
- Fu, L.X.; Guo, Y.; Yang, X.C.; Huang, J.; Wang, L.J. Carbon dots modifier for highly active photocatalysts based on ZnO porous microspheres. J. Mater. Sci. Mater. Electron. 2018, 29, 19994–20002. [Google Scholar] [CrossRef]
- Tasso, G.T.; Wenk, J.; Mattia, D. Photocatalytic ZnO Foams for micropollutant degradation. Adv. Sustain. Syst. 2021, 5, 2000208. [Google Scholar] [CrossRef]
- Karimi, S.M.; Behpour, M. Fabricated CuO-ZnO/nanozeolite X heterostructure with enhanced photocatalytic performance: Mechanism investigation and degradation pathway. Mater. Sci. Eng. B 2021, 269, 115170. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ju, Y.W. Influence of post-heat treatment on photocatalytic activity in metal-embedded TiO2 nanofibers. Korean J. Chem. Eng. 2021, 38, 1522–1528. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, J.; Li, Y.V.; Hao, J.; Pan, K. Novel ZnO/NiO Janus-like nanofibers for effective photocatalytic degradation. Nanotechnology 2018, 29, 435704. [Google Scholar] [CrossRef]
- Alias, N.H.; Jaafar, J.; Samitsu, S.; Yusof, N.; Othman, M.H.D.; Rahman, M.A.; Ismail, A.F.; Aziz, F.; Salleh, W.N.W.; Othman, N.H. Photocatalytic degradation of oilfield produced water using graphitic carbon nitride embedded in electrospun polyacrylonitrile nanofibers. Chemosphere 2018, 204, 79–86. [Google Scholar] [CrossRef]
- Lakshmi, K.; Kadirvelu, K.; Mohan, P.S. Photo-decontamination of p-nitrophenol using reusable lanthanum doped ZnO electrospun nanofiber catalyst. J. Mater. Sci. Mater. Electron. 2018, 29, 12109–12117. [Google Scholar] [CrossRef]
- Tuncel, D.; Ökte, A.N. ZnO@CuO derived from Cu-BTC for efficient UV-induced photocatalytic applications. Catal. Today 2019, 328, 149–156. [Google Scholar] [CrossRef]
- Sakib, A.A.; Masum, S.M.; Hoinkis, J.; Islam, R.; Molla, M.A. Synthesis of CuO/ZnO nanocomposites and their application in photodegradation of toxic textile dye. J. Compos. Sci. 2019, 3, 91. [Google Scholar] [CrossRef]
- Tissera, N.D.; Wijesena, R.N.; Sandaruwan, C.S.; de Silva, R.M.; de Alwis, A.; de Silva, K.M.N. Photocatalytic activity of ZnO nanoparticle encapsulated poly(acrylonitrile) nanofibers. Mater. Chem. Phys. 2018, 204, 195–206. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Kuo, C.C.; Chen, B.Y.; Chiu, P.C.; Tsai, P.C. Multifunctional polyacrylonitrile-ZnO/Ag electrospun nanofiber membranes with various ZnO morphologies for photocatalytic, UV-shielding, and antibacterial applications. J. Polym. Sci. Polym. Phys. 2015, 53, 262–269. [Google Scholar] [CrossRef]
- Wang, H.Y.; Yang, Y.; Li, X.; Li, L.J.; Wang, C. Preparation and characterization of porous TiO2/ZnO composite nanofibers via electrospinning. Chin. Chem. Lett. 2010, 21, 1119–1123. [Google Scholar] [CrossRef]
- Fang, W.; Yu, L.; Xu, L. Preparation, characterization and photocatalytic performance of heterostructured CuO-ZnO-loaded composite nanofiber membranes. Beilstein J. Nanotechnol. 2020, 11, 631–650. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, H.; Huang, H.; Liu, Y.; Li, H.; Ming, H.; Kang, Z. ZnO/carbon quantum dots nanocomposites: One-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J. Chem. 2012, 36, 1031–1035. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.P.; Zhao, J.X.; Ge, Z.H.; Zhao, X.K.; Zou, L. ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Appl. Surf. Sci. 2013, 279, 367–373. [Google Scholar] [CrossRef]
- Raula, M.; Rashid, M.H.; Paira, T.K.; Dinda, E.; Mandal, T.K. Ascorbate-Assisted Growth of Hierarchical ZnO Nanostructures: Sphere, Spindle, and Flower and Their Catalytic Properties. Langmuir 2010, 26, 8769–8782. [Google Scholar] [CrossRef]
- Alias, N.H.; Jaafar, J.; Samitsu, S.; Ismail, A.F.; Mohamed, M.A.; Othman, M.H.D.; Rahman, M.A.; Othman, N.H.; Nor, N.A.M.; Yusof, N.; et al. Mechanistic insight of the formation of visible-light responsive nanosheet graphitic carbon nitride embedded polyacrylonitrile nanofibres for wastewater treatment. J. Water Process. Eng. 2020, 33, 101015. [Google Scholar] [CrossRef]
- Liang, Q.; Li, Z.; Bai, Y.; Huang, Z.H.; Kang, F.; Yang, Q.H. Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Sci. China Mater. 2017, 60, 109–118. [Google Scholar] [CrossRef]
- Bellini, J.V.; Machado, R.; Morelli, M.R.; Kiminami, R.H.G.A. Thermal, Structural and Morphological Characterisation of Freeze-dried Copper(II) Acetate Monohydrate and its Solid Decomposition Products. Mater. Res. 2002, 5, 453–457. [Google Scholar] [CrossRef]
- Baláž, P.; Aláčová, A.; Achimovičová, M.; Ficeriová, J.; Godočíková, E. Mechanochemistry in hydrometallurgy of sulphide minerals. Hydrometallurgy 2005, 77, 9–17. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Liu, Z.; Xia, P.; Xie, Y.; Xiong, D. Synthesis of the 0D/3D CuO/ZnO Heterojunction with Enhanced Photocatalytic Activity. J. Phys. Chem. C 2018, 122, 9531–9539. [Google Scholar] [CrossRef]
- Ni, M.; Zhang, H.; Khan, S.; Chen, X.; Chen, F.; Guo, C.; Zhong, Y.; Hu, Y. In-situ photodeposition of cadmium sulfide nanocrystals on manganese dioxidenanorods with rich oxygen vacancies for boosting water-to-oxygen photooxidation. J. Colloid Interface Sci. 2022, 613, 764–774. [Google Scholar] [CrossRef]
- Roza, L.; Fauzia, V.; Rahman, M.Y.A.; Isnaeni, I.; Putro, P.A. ZnO nanorods decorated with carbon nanodots and its metal doping as efficient photocatalyst for degradation of methyl blue solution. Opt. Mater. 2020, 109, 110360. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, Y.; Liu, Y.; Yang, W.; Qian, H. Microwave-assisted route to fabricate coaxial ZnO/C/CdS nanocables with enhanced visible light-driven photocatalytic activity. CrystEngComm 2012, 14, 7686–7693. [Google Scholar] [CrossRef]
- Malik, J.; Kumar, S.; Srivastava, P.; Bag, M.; Mandal, T.K. Cation disorder and octahedral distortion control of internal electric field, band bending and carrier lifetime in Aurivillius perovskite solid solutions for enhanced photocatalytic activity. Mater. Adv. 2021, 2, 4832. [Google Scholar] [CrossRef]
- Ming, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, Z. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 2012, 41, 9526–9531. [Google Scholar] [CrossRef]
Photocatalyst | Pollutants | Photocatalytic Degradation | Reference |
---|---|---|---|
NFMs loaded with CuO/ZnO | MB:10 mg/L | UV light: 60% for 3 h, 94.2% for 7 h | [5] |
PAN/Ag/ZnO microporous membranes | Rhodamine B (RhB):10 mg/L | Visible light: 72% for 3 h | [8] |
ZnO@CuO nanoparticles | methyl orange (MO) MB | UV light: 93.3% (MO) and 94.4% (MB) for 100 min | [29] |
CuO/ZnO nanoparticles | MB: 10 mg/L | Sunlight: 98% for 2 h | [30] |
ZnO nanoparticles encapsulated NFMs | MO: 20 mg/L | UV light: 95% for 9 h | [31] |
PAN-ZnO/Ag NFMs | MB: 5 mg/L | UV light: 85% for 2 h | [32] |
Porous TiO2/ZnO NFMs | MB: 12.8 mg/L | Xenon-lamp: 30% for 1 h | [33] |
NFMs loaded with CuO/ZnO | MO:10 mg/L | UV light: 92.2% for 5 h | [34] |
ZnO/CQDs nanopaticles | Benzene: 15.6 ppm | Visible light: 86% for 24 h | [35] |
ZnO/CQDs nanopaticles | RhB | Visible light: 80% for 2 h | [36] |
CZC@PAN NFMs | MB:10 mg/L | UV light: 92.38% for 1.5 h, Sunlight: 99.56% for 4 h | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Fan, P.; Xu, L. CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance. Catalysts 2023, 13, 110. https://doi.org/10.3390/catal13010110
Xu H, Fan P, Xu L. CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance. Catalysts. 2023; 13(1):110. https://doi.org/10.3390/catal13010110
Chicago/Turabian StyleXu, Huanhuan, Peizhi Fan, and Lan Xu. 2023. "CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance" Catalysts 13, no. 1: 110. https://doi.org/10.3390/catal13010110
APA StyleXu, H., Fan, P., & Xu, L. (2023). CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance. Catalysts, 13(1), 110. https://doi.org/10.3390/catal13010110