WO3 Fibers/g-C3N4 Z-Scheme Heterostructure Photocatalysts for Simultaneous Oxidation/Reduction of Phenol/Cr (VI) in Aquatic Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Photocatalysts
2.1.1. XRD Patterns and FT-IR Spectra
2.1.2. Morphology and UV-Vis Diffuse Reflectance
2.2. Photocatalytic Activity
2.3. Photocatalytic Mechanism for the WO3/g-C3N4 Composite Catalysts
2.4. Recyclability of the Composite Catalyst
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of Electrospun WO3 Fibers, g-C3N4and Composite Materials WO3/g-C3N4
3.3. Characterization
3.4. Spectroscopy Measurements
3.5. Determination of •OH Radicals by Fluorescence Measurements
3.6. Evaluation of Photocatalytic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Hu, Y.; Meng, S.; Fu, X. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B Environ. 2014, 150–151, 564–573. [Google Scholar] [CrossRef]
- Cui, L.; Ding, X.; Wang, Y.; Shi, H.; Huang, L.; Kang, S. Facile Preparation of Z-scheme WO3/g-C3N4 Composite Photocatalyst with Enhanced Photocatalytic Performance under Visible Light. Appl. Surf. Sci. 2017, 391, 202–210. [Google Scholar] [CrossRef]
- Jin, Z.; Murakami, N.; Tsubota, T.; Ohno, T. Complete oxidation of acetaldehyde over a composite photocatalyst of graphitic carbon nitride and tungsten (VI) oxide under visible-light irradiation. Appl. Catal. B Environ. 2014, 150–151, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Zhu, Z.; Long, Y.; Li, W. Single-source-precursor-assisted synthesis of porous WO3/g-C3N4 with enhanced photocatalytic property. Colloids Surf. A 2019, 582, 123857. [Google Scholar] [CrossRef]
- Mamba, G.; Mishra, A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347–377. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, Z.; Shen, X.; Zhou, H.; Ma, L. Facile synthesis of WO3 nanorods/g-C3N4 composites with enhanced photocatalytic activity. Ceram. Int. 2015, 41, 5600–5606. [Google Scholar] [CrossRef]
- Zhu, Y.; Ameyama, K.; Anderson, P.M.; Beyerlein, I.J.; Gao, H.; Kim, H.S.; Lavernia, E.; Mathaudhu, S.; Mughrabi, H.; Ritchie, R.O.; et al. Heterostructured materials: Superior properties from hetero-zone interaction. Mater. Res. Lett. 2021, 9, 1–31. [Google Scholar] [CrossRef]
- Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. A Review of Direct Z-Scheme Photocatalysts. Small Methods 2017, 1700080. [Google Scholar] [CrossRef]
- Xiao, T.; Tang, Z.; Yang, Y.; Tang, L.; Zhou, Y.; Zou, Z. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Appl. Catal. B Environ. 2018, 220, 417–428. [Google Scholar] [CrossRef]
- Priya, A.; Senthil, R.A.; Selvi, A.; Arunachalam, P.; Senthil, K.C.K.; Madhavan, J.; Boddula, R.; Pothu, R.; Al-Mayouf, A.M. A study of photocatalytic and photoelectrochemical activity of as-synthesized WO3/g-C3N4 composite photocatalysts for AO7 degradation. Mater. Sci. Energy Technol. 2020, 3, 43–50. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Meng, J.; Liu, Y.; Ren, M.; Guo, Y.; Yang, Y. Robust Z-scheme g-C3N4/WO3 heterojunction photocatalysts with morphology control of WO3 for efficient degradation of phenolic pollutants. Sep. Purif. Technol. 2021, 255, 117693. [Google Scholar] [CrossRef]
- Han, X.; Xu, D.; An, L.; Hou, C.; Li, Y.; Zhang, Q.; Wang, H. WO3/g-C3N4 two-dimensional composites for visible-light driven photocatalytic hydrogen production. Int. J. Hydrogn Energy 2018, 43, 4845–4855. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, F.; Goei, R.; Zhou, Y. Construction of WO3-g-C3N4 composites as efficient photocatalysts for pharmaceutical degradation under visible light. Catal. Sci. Technol. 2017, 7, 2591–2600. [Google Scholar] [CrossRef]
- Sun, X.Y.; Zhang, F.J.; Kong, C. Porous g-C3N4/WO3 photocatalyst prepared by simple calcination for efficient hydrogen generation under visible light. Colloids Surf. A Physicochem. Eng. Asp. 2020, 594, 124653. [Google Scholar] [CrossRef]
- Chai, B.; Liu, C.; Yan, J.; Ren, Z.; Wang, Z.-J. In-situ synthesis of WO3 nanoplates anchored on g-C3N4 Z-scheme photocatalysts for significantly enhanced photocatalytic activity. Appl. Surf. Sci. 2018, 448, 1–8. [Google Scholar] [CrossRef]
- Wang, P.; Lu, N.; Su, Y.; Liu, N.; Yu, H.; Li, J.; Wu, Y. Fabrication of WO3 @g-C3N4 with core@shell nanostructure for enhanced photocatalytic degradation activity under visible light. Appl. Surf. Sci. 2017, 423, 197–204. [Google Scholar] [CrossRef]
- Singh, J.; Arora, A.; Basu, S. Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light. J. Alloys Compd. 2019, 808, 151734. [Google Scholar] [CrossRef]
- Cadan, F.M.; Ribeiro, C.; Azevedo, E.B. Improving g-C3N4:WO3 Z-scheme photocatalytic performance under visible light by multivariate optimization of g-C3N4 synthesis. Appl. Surf. Sci. 2021, 537, 147904. [Google Scholar] [CrossRef]
- Jing, H.; Ou, R.; Yu, H.; Zhao, Y.; Lu, Y.; Huo, M.; Huo, H.; Wang, X. Engineering of g-C3N4 nanoparticles/WO3 hollow microspheres photocatalyst with Z-scheme heterostructure for boosting tetracycline hydrochloride degradation. Sep. Purif. Technol. 2021, 255, 117646. [Google Scholar] [CrossRef]
- Liu, X.; Jin, A.; Jia, Y.; Xia, T.; Deng, C.; Zhu, M.; Chen, C.; Chen, X. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl. Surf. Sci. 2017, 405, 359–371. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, M.; Yin, H.; Luo, Y.; Liu, X. Improved photocatalytic activity of WO3/C3N4: By constructing an anchoring morphology with a Z-scheme band structure. Solid State Sci. 2019, 95, 105926. [Google Scholar] [CrossRef]
- Chang, F.; Zheng, J.; Wu, F.; Wang, X.; Deng, B. Binary composites WO3/g-C3N4 in porous morphology: Facile construction, characterization, and reinforced visible light photocatalytic activity. Colloids Surf. A Physicochem. Eng. Asp. 2019, 563, 11–21. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, L.; Ding, P.; Wang, C.; Wang, Q.; Wang, H.; Li, Y.; Xu, H.; Li, H. One-step oxygen vacancy engineering of WO3-x/2D g-C3N4 heterostructure: Triple effects for sustaining photoactivity. J. Alloys Compd. 2019, 795, 426–435. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Kennedy, S.J.; Wu, Y. Electrospinning materials for energy-related applications and devices. J. Power Sources 2011, 196, 4886–4904. [Google Scholar] [CrossRef]
- Feng, M.; Liu, Y.; Zhao, Z.; Huang, H.; Peng, Z. The preparation of Fe doped triclinic-hexagonal phase heterojunction WO3 film and its enhanced photocatalytic reduction of Cr (VI). Mater. Res. Bull. 2019, 109, 168–174. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Bairamis, F.; Konstantinou, I.; Petrakis, D.; Vaimakis, T. Enhanced Performance of Electrospun Nanofibrous TiO2/g-C3N4 Photocatalyst in Photocatalytic Degradation of Methylene Blue. Catalysts 2019, 9, 880. [Google Scholar] [CrossRef] [Green Version]
- Giannakas, A.; Bairamis, F.; Papakostas, I.; Zerva, T.; Konstantinou, I. Evaluation of TiO2/V2O5 and N,F-doped-TiO2/V2O5 nanocomposite photocatalysts toward reduction of Cr(VI) and oxidation reactions by •OH radicals. J. Ind. Eng. Chem. 2018, 65, 370–379. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, T.; Le, L.; Ruan, X.; Fang, P.; Pan, C.; Xiong, R.; Shi, J.; Wei, J. Quick and facile preparation of visible light-driven TiO2 photocatalyst with high absorption and photocatalytic activity. Sci. Rep. 2014, 4, 7045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Catalyst | Specific Surface Area SBET (m2 g−1) | Average Pore Diameter (nm) | VTOT (cm3 g−1) | Crystal Size (nm) | Energy Band Gap (eV) | Absorption Edge λ (nm) | DLS Median Diameter (μm) | DLS Modal Diameter (μm) |
---|---|---|---|---|---|---|---|---|
WO3 fibers | 14.1 | 10.1 | 0.035 | 12.5 | 2.22 | 558 | 0.284 | 0.282 |
g-C3N4 | 10.1 | 13.1 | 0.033 | 10.8 | 2.51 | 494 | 0.220 | 0.178 |
1%WCN | 51.1 | 9.8 | 0.125 | 15.3 | 2.49 | 498 | 0.434 | 0.355 |
5%WCN | 58.4 | 8.9 | 0.131 | 13.9 | 2.47 | 501 | 0.335 | 0.282 |
6.5%WCN | 49.0 | 9.1 | 0.112 | 12.4 | 2.50 | 496 | 0.328 | 0.282 |
8%WCN | 49.0 | 9.3 | 0.113 | 14.5 | 2.48 | 500 | 0.317 | 0.282 |
10%WCN | 64.4 | 8.8 | 0.142 | 15.2 | 2.49 | 498 | 0.450 | 0.447 |
15%WCN | 67.7 | 8.5 | 0.144 | 13.0 | 2.29 | 541 | 0.299 | 0.282 |
Single | Phenol | Phenolics | ||||
---|---|---|---|---|---|---|
Catalyst | k (min−1) | t1/2 (min) | R2 | k (min−1) | t1/2 (min) | R2 |
WO3 fibers | 0.0007 | 976.2 | 0.9959 | 0.0007 | 9902.1 | 0.9593 |
g-C3N4 | 0.0018 | 382.9 | 0.9889 | 0.0007 | 1004.5 | 0.9501 |
1%WCN | 0.0053 | 131.7 | 0.9953 | 0.0026 | 265.5 | 0.9879 |
5%WCN | 0.0081 | 85.9 | 0.9936 | 0.0038 | 181.4 | 0.9841 |
6.5%WCN | 0.0095 | 72.8 | 0.9975 | 0.0057 | 121.6 | 0.9990 |
8%WCN | 0.0079 | 87.6 | 0.9953 | 0.0022 | 313.6 | 0.9079 |
10%WCN | 0.0101 | 68.4 | 0.9960 | 0.0062 | 112.5 | 0.9989 |
15%WCN | 0.0042 | 166.2 | 0.9888 | 0.0011 | 613.4 | 0.9900 |
Binary | Phenol | Phenolics | Cr (VI) | ||||||
---|---|---|---|---|---|---|---|---|---|
Catalyst | k (min−1) | t1/2 (min) | R2 | k (min−1) | t1/2 (min) | R2 | k (min−1) | t1/2 (min) | R2 |
WO3 fibers | 0.0043 | 163.1 | 0.9972 | 0.0064 | 109.1 | 0.9970 | 0.0019 | 362.9 | 0.9685 |
g-C3N4 | 0.0024 | 294.9 | 0.8700 | 0.0060 | 115.7 | 0.9904 | 0.0025 | 278.3 | 0.9633 |
1%WCN | 0.0095 | 73.1 | 0.9911 | 0.0288 | 24.1 | 0.9774 | 0.0098 | 70.9 | 0.9554 |
5%WCN | 0.0165 | 41.9 | 0.9791 | 0.0454 | 15.2 | 0.9790 | 0.0169 | 41.1 | 0.9380 |
6.5%WCN | 0.0122 | 56.8 | 0.9977 | 0.0471 | 14.7 | 0.9889 | 0.0155 | 44.6 | 0.9714 |
8%WCN | 0.0045 | 152.6 | 0.9798 | 0.0196 | 35.4 | 0.9938 | 0.0057 | 120.9 | 0.9345 |
10%WCN | 0.0090 | 76.9 | 0.9959 | 0.0331 | 20.9 | 0.9607 | 0.0096 | 71.1 | 0.9685 |
15%WCN | 0.0125 | 55.3 | 0.9935 | 0.0248 | 27.9 | 0.9886 | 0.0087 | 79.9 | 0.9582 |
6.5%WCNp | - | - | - | 0.0448 | 15.5 | 0.9818 | 0.0117 | 59.2 | 0.9836 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bairamis, F.; Konstantinou, I. WO3 Fibers/g-C3N4 Z-Scheme Heterostructure Photocatalysts for Simultaneous Oxidation/Reduction of Phenol/Cr (VI) in Aquatic Media. Catalysts 2021, 11, 792. https://doi.org/10.3390/catal11070792
Bairamis F, Konstantinou I. WO3 Fibers/g-C3N4 Z-Scheme Heterostructure Photocatalysts for Simultaneous Oxidation/Reduction of Phenol/Cr (VI) in Aquatic Media. Catalysts. 2021; 11(7):792. https://doi.org/10.3390/catal11070792
Chicago/Turabian StyleBairamis, Feidias, and Ioannis Konstantinou. 2021. "WO3 Fibers/g-C3N4 Z-Scheme Heterostructure Photocatalysts for Simultaneous Oxidation/Reduction of Phenol/Cr (VI) in Aquatic Media" Catalysts 11, no. 7: 792. https://doi.org/10.3390/catal11070792
APA StyleBairamis, F., & Konstantinou, I. (2021). WO3 Fibers/g-C3N4 Z-Scheme Heterostructure Photocatalysts for Simultaneous Oxidation/Reduction of Phenol/Cr (VI) in Aquatic Media. Catalysts, 11(7), 792. https://doi.org/10.3390/catal11070792