Feasibility and Acceptance of Augmented and Virtual Reality Exergames to Train Motor and Cognitive Skills of Elderly
Abstract
:1. Introduction
2. Background
2.1. Elderly Falls and Physical Exercises
2.2. Literature Review
3. Materials and Methods
3.1. GAME2AWE Platform
3.1.1. AR Games
3.1.2. VR Games
3.1.3. Data Storage and Analysis
3.1.4. Implementation Tools
3.2. Evaluation
3.2.1. Usability Assessment
3.2.2. Tolerability Assessment
“Throughout and following the VR-based training, did you experience any uncomfortable symptoms?”
3.2.3. Applicability Assessment
3.2.4. Technology Acceptance Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanaka, K.; Parker, J.; Baradoy, G.; Sheehan, D.; Holash, J.R.; Katz, L. A Comparison of Exergaming Interfaces for Use in Rehabilitation Programs and Research. Loading 2012, 6, 9. [Google Scholar]
- Gallou-Guyot, M.; Mandigout, S.; Bherer, L.; Perrochon, A. Effects of Exergames and Cognitive-Motor Dual-Task Training on Cognitive, Physical and Dual-Task Functions in Cognitively Healthy Older Adults: An Overview. Ageing Res. Rev. 2020, 63, 101135. [Google Scholar] [CrossRef]
- Thomas, E.; Battaglia, G.; Patti, A.; Brusa, J.; Leonardi, V.; Palma, A.; Bellafiore, M. Physical Activity Programs for Balance and Fall Prevention in Elderly: A Systematic Review. Medicine 2019, 98, e16218. [Google Scholar] [CrossRef]
- Choi, S.D.; Guo, L.; Kang, D.; Xiong, S. Exergame Technology and Interactive Interventions for Elderly Fall Prevention: A Systematic Literature Review. Appl. Ergon. 2017, 65, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk Factors for Falls among Older Adults: A Review of the Literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.D.; Cruit, J.; Endsley, M.; Beers, S.M.; Sawyer, B.D.; Hancock, P.A. The Effects of Virtual Reality, Augmented Reality, and Mixed Reality as Training Enhancement Methods: A Meta-Analysis. Hum. Factors 2021, 63, 706–726. [Google Scholar] [CrossRef] [PubMed]
- Dermody, G.; Whitehead, L.; Wilson, G.; Glass, C. The Role of Virtual Reality in Improving Health Outcomes for Community-Dwelling Older Adults: Systematic Review. J. Med. Internet. Res. 2020, 22, e17331. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhou, K.; Chen, Y.; Zhou, L.; Dapeng, B.; Zhou, J. Is virtual reality training more effective than traditional physical training on balance and functional mobility in healthy older adults? A systematic review and meta-analysis. Front. Hum. Neurosci. 2022, 125, 843481. [Google Scholar] [CrossRef]
- Yu, D.; Li, X.; Lai, F.H. The Effect of Virtual Reality on Executive Function in Older Adults with Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Aging Ment. Health 2022, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Janicki, S. A Cognitive-Based Board Game with Augmented Reality for Older Adults: Development and Usability Study. JMIR Serious Games 2020, 8, e22007. [Google Scholar] [CrossRef]
- Afifi, T.; Collins, N.; Rand, K.; Otmar, C.; Mazur, A.; Dunbar, N.E.; Fujiwara, K.; Harrison, K.; Logsdon, R. Using Virtual Reality to Improve the Quality of Life of Older Adults with Cognitive Impairments and Their Family Members Who Live at a Distance. Health Commun. 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.C.M.; Andringa, G. The Potential of Immersive Virtual Reality for Cognitive Training in Elderly. Gerontology 2020, 66, 614–623. [Google Scholar] [CrossRef] [PubMed]
- López-Nava, I.H.; Rodriguez, M.D.; García-Vázquez, J.P.; Perez-Sanpablo, A.I.; Quiñones-Urióstegui, I.; Meneses-Peñaloza, A.; Castillo, V.; Cuaya-Simbro, G.; Armenta, J.S.; Martínez, A.; et al. Current State and Trends of the Research in Exergames for the Elderly and Their Impact on Health Outcomes: A Scoping Review. J. Ambient. Intell. Human. Comput. 2022. [CrossRef]
- Piech, J.; Czernicki, K. Virtual Reality Rehabilitation and Exergames—Physical and Psychological Impact on Fall Prevention among the Elderly—A Literature Review. Appl. Sci. 2021, 11, 4098. [Google Scholar] [CrossRef]
- Høeg, E.R.; Povlsen, T.M.; Bruun-Pedersen, J.R.; Lange, B.; Nilsson, N.C.; Haugaard, K.B.; Faber, S.M.; Hansen, S.W.; Kimby, C.K.; Serafin, S. System Immersion in Virtual Reality-Based Rehabilitation of Motor Function in Older Adults: A Systematic Review and Meta-Analysis. Front. Virtual Real. 2021, 2, 647993. [Google Scholar] [CrossRef]
- Seifert, A.; Schlomann, A. The use of virtual and augmented reality by older adults: Potentials and challenges. Front. Virtual Real. 2021, 2, 639718. [Google Scholar] [CrossRef]
- Brox, E.; Konstantinidis, S.T.; Evertsen, G. User-Centered Design of Serious Games for Older Adults Following 3 Years of Experience with Exergames for Seniors: A Study Design. JMIR Serious Games 2017, 5, e2. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Pham, T.P.; Theng, Y.-L.; Katajapuu, N.; Luimula, M. Exergames Designed for Older Adults: A Pilot Evaluation on Psychosocial Well-Being. Games Health J. 2017, 6, 371–378. [Google Scholar] [CrossRef]
- Bacha, J.M.R.; Gomes, G.C.V.; de Freitas, T.B.; Viveiro, L.A.P.; da Silva, K.G.; Bueno, G.C.; Varise, E.M.; Torriani-Pasin, C.; Alonso, A.C.; Luna, N.M.S.; et al. Effects of kinect adventures games versus conventional physical therapy on postural control in elderly people: A randomized controlled trial. Games Health J. 2018, 7, 24–36. [Google Scholar] [CrossRef]
- Baranowski, T.; Lyons, E.J. Scoping Review of Pokémon Go: Comprehensive Assessment of Augmented Reality for Physical Activity Change. Games Health J. 2020, 9, 71–84. [Google Scholar] [CrossRef]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Cuevas-Trisan, R. Balance problems and fall risks in the elderly. Clin. Geriatr. Med. 2019, 35, 173–183. [Google Scholar] [CrossRef]
- Kannus, P.; Niemi, S.; Palvanen, M.; Parkkari, J. Rising incidence of fall-induced injuries among elderly adults. J. Public Health 2005, 13, 212–215. [Google Scholar] [CrossRef]
- Heinrich, S.; Rapp, K.; Rissmann, U.; Becker, C.; König, H.H. Cost of falls in old age: A systematic review. Osteoporos. Int. 2010, 21, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Muir, S.W.; Berg, K.; Chesworth, B.; Klar, N.; Speechley, M. Quantifying the magnitude of risk for balance impairment on falls in community-dwelling older adults: A systematic review and meta-analysis. J. Clin. Epidemiol. 2010, 63, 389–406. [Google Scholar] [CrossRef]
- Robinovitch, S.N.; Feldman, F.; Yang, Y.; Schonnop, R.; Leung, P.M.; Sarraf, T.; Sims-Gould, J.; Loughin, M. Video capture of the circumstances of falls in elderly people residing in long-term care: An observational study. Lancet 2013, 381, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Sherrington, C.; Gates, S.; Clemson, L.; Lamb, S.E. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2012, 9, CD007146. [Google Scholar] [CrossRef]
- Sherrington, C.; Whitney, J.C.; Lord, S.R.; Herbert, R.D.; Cumming, R.G.; Close, J.C. Effective exercise for the prevention of falls: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2008, 56, 2234–2243. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Report on Falls Prevention in Older Age; World Health Organization: Geneva, Switzerland, 2008; ISBN 978-92-4-156353-6.
- El-Khoury, F.; Cassou, B.; Charles, M.A.; Dargent-Molina, P. The effect of fall prevention exercise programmes on fall induced injuries in community dwelling older adults: Systematic review and meta-analysis of randomised controlled trials. BMJ 2013, 347, f6234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoene, D.; Lord, S.R.; Delbaere, K.; Severino, C.; Davies, T.A.; Smith, S.T. A randomized controlled pilot study of home-based step training in older people using videogame technology. PLoS ONE 2013, 8, e57734. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, T.B.F.; de Medeiros, C.S.P.; de Oliveira, V.H.B.; Vieira, E.R.; de Cavalcanti, F.A.C. Effectiveness of exergames for improving mobility and balance in older adults: A systematic review and meta-analysis. Syst. Rev. 2020, 9, 163. [Google Scholar] [CrossRef]
- Iakovidis, P.; Lytras, D.; Fetlis, A.; Kasimis, K.; Ntinou, S.R.; Chatzikonstantinou, P. The efficacy of exergames on balance and reducing falls in older adults: A narrative review. Int. J. Orthop. 2023, 9, 221–225. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, H.; Wu, X.; Du, Y.; Yang, X.; Hu, M.; Ning, H.; Liao, L.; Chen, H.; Zhao, Y. Effectiveness of exergaming in improving cognitive and physical function in people with mild cognitive impairment or dementia: Systematic review. JMIR Serious Games 2020, 8, e16841. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Tang, Q.; Xu, S.; Leng, P.; Pan, Z. Design and Evaluation of an Augmented Reality-Based Exergame System to Reduce Fall Risk in the Elderly. Int. J. Environ. Res. Public Health 2020, 17, 7208. [Google Scholar] [CrossRef] [PubMed]
- Stamm, O.; Vorwerg, S.; Müller-Werdan, U. Exergames in Augmented Reality for Older Adults with Hypertension: A Qualitative Study Exploring User Requirements. In International Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2019; pp. 232–244. [Google Scholar] [CrossRef]
- Nishchyk, A.; Geentjens, W.; Medina, A.; Klein, M.; Chen, W. An Augmented Reality Game for Helping Elderly to Perform Physical Exercises at Home. In International Conference on Computers Helping People with Special Needs; Springer: Berlin/Heidelberg, Germany, 2020; pp. 233–241. [Google Scholar] [CrossRef]
- Pereira, G.A.F.; Bacha, J.M.R.; Silva, I.B.A.N.; Pompeu, J.E.; de Deus Lopes, R. Virtual Reality and Augmented Reality Exergames for Older Fallers: Considerations about Design and Applicability by Physical Therapists. In Anais Estendidos do XX Simpósio Brasileiro de Jogos e Entretenimento Digital; SBC: Brasilia, Brazil, 2021; pp. 855–862. [Google Scholar] [CrossRef]
- Muñoz, J.; Mehrabi, S.; Li, Y.; Basharat, A.; Middleton, L.E.; Cao, S.; Barnett-Cowan, M.; Boger, J. Immersive Virtual Reality Exergames for Persons Living with Dementia: User-Centered Design Study as a Multistakeholder Team during the COVID-19 Pandemic. JMIR Serious Games 2022, 10, e29987. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, M.; Henrique, P.P.B.; Brum, M.R.; Colussi, E.L.; De Marchi, A.C.B.; Rieder, R. Motion Rehab AVE 3D: A VR-Based Exergame for Post-Stroke Rehabilitation. Comput. Methods Programs Biomed. 2017, 151, 15–20. [Google Scholar] [CrossRef]
- Kwan, R.Y.C.; Liu, J.Y.W.; Fong, K.N.K.; Qin, J.; Leung, P.K.-Y.; Sin, O.S.K.; Hon, P.Y.; Suen, L.W.; Tse, M.-K.; Lai, C.K. Feasibility and Effects of Virtual Reality Motor-Cognitive Training in Community-Dwelling Older People with Cognitive Frailty: Pilot Randomized Controlled Trial. JMIR Serious Games 2021, 9, e28400. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liang, H.-N.; Yu, K.; Wen, S.; Baghaei, N.; Tu, H. Acceptance of Virtual Reality Exergames among Chinese Older Adults. Int. J. Hum.–Comput. Interact. 2022, 39, 1134–1148. [Google Scholar] [CrossRef]
- Goumopoulos, C.; Drakakis, E.; Gklavakis, D. Augmented and Virtual Reality Based Exergames in GAME2AWE for Elderly Fall Prevention. In Proceedings of the 2022 18th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Thessaloniki, Greece, 10 October 2022; pp. 100–105. [Google Scholar] [CrossRef]
- Danousis, M.; Goumopoulos, C.; Fakis, A. Exergames in the GAME2AWE Platform with Dynamic Difficulty Adjustment. In Proceedings of the Entertainment Computing–ICEC 2022: 21st IFIP TC 14 International Conference, ICEC 2022, Bremen, Germany, 1–3 November 2022; pp. 214–223. [Google Scholar] [CrossRef]
- Sanders, E.B.N. From User-Centered to Participatory Design Approaches. In Design and the Social Sciences; Frascara, J., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 18–25. ISBN 978-0-429-21927-6. [Google Scholar]
- Chartomatsidis, M.; Goumopoulos, C. Development and Evaluation of a Motion-Based Exercise Game for Balance Improvement. In Proceedings of the Information and Communication Technologies for Aging Well and e-Health: 5th International Conference, ICT4AWE 2019, Heraklion, Crete, Greece, 2–4 May 2019; Revised Selected Papers 5. pp. 119–141. [Google Scholar] [CrossRef]
- Goumopoulos, C.; Chartomatsidis, M.; Koumanakos, G. Participatory Design of Fall Prevention Exergames Using Multiple Enabling Technologies. In ICT4AWE; SciTePress: Setubal, Portugal, 2022; pp. 70–80. [Google Scholar] [CrossRef]
- Tahmosybayat, R.; Baker, K.; Godfrey, A.; Caplan, N.; Barry, G. Movements of Older Adults during Exergaming Interventions That Are Associated with the Systems Framework for Postural Control: A Systematic Review. Maturitas 2018, 111, 90–99. [Google Scholar] [CrossRef]
- Goumopoulos, C.; Ougkrenidis, D.; Gklavakis, D.; Ioannidis, I. A Smart Floor Device of an Exergame Platform for Elderly Fall Prevention. In Proceedings of the 2022 25th Euromicro Conference on Digital System Design (DSD), Maspalomas, Spain, 31 August–2 September 2022; pp. 585–592. [Google Scholar] [CrossRef]
- Cohavi, O.; Levy-Tzedek, S. Young and old users prefer immersive virtual reality over a social robot for short-term cognitive training. Int. J. Hum.–Comput. Stud. 2022, 161, 102775. [Google Scholar] [CrossRef]
- Lord, S.R.; Fitzpatrick, R.C. Choice Stepping Reaction Time: A Composite Measure of Falls Risk in Older People. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M627–M632. [Google Scholar] [CrossRef]
- Brooke, J. SUS-A Quick and Dirty Usability Scale. Usability Eval. Ind. 1996, 189, 4–7. [Google Scholar] [CrossRef]
- Sauro, J. A Practical Guide to the System Usability Scale: Background, Benchmarks & Best Practices; Measuring Usability LLC: Denver, CO, USA, 2011. [Google Scholar]
- Bangor, A.; Kortum, P.T.; Miller, J.T. An empirical evaluation of the system usability scale. Intl. J. Hum.–Comput. Interact. 2008, 24, 574–594. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, J.; Choi, Y.; Choe, M. Virtual Reality Sickness Questionnaire (VRSQ): Motion Sickness Measurement Index in a Virtual Reality Environment. Appl. Ergon. 2018, 69, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Grassini, S.; Laumann, K.; Luzi, A.K. Association of Individual Factors with Simulator Sickness and Sense of Presence in Virtual Reality Mediated by Head-Mounted Displays (HMDs). Multimodal Technol. Interact. 2021, 5, 7. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425. [Google Scholar] [CrossRef] [Green Version]
- Yap, Y.-Y.; Tan, S.-H.; Choon, S.-W. Elderly’s Intention to Use Technologies: A Systematic Literature Review. Heliyon 2022, 8, e08765. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Newbury Park, CA, USA, 2021. [Google Scholar]
- de Veer, A.J.E.; Peeters, J.M.; Brabers, A.E.; Schellevis, F.G.; Rademakers, J.J.J.; Francke, A.L. Determinants of the Intention to Use E-Health by Community Dwelling Older People. BMC Health Serv. Res. 2015, 15, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiang, E.L.; Yang, Z.; Yang, Q.; Lai, P.C.; Lin, C.L.; Wu, S.T. AR/VR light engines: Perspectives and challenges. Adv. Opt. Photonics 2022, 14, 783–861. [Google Scholar] [CrossRef]
- Yin, K.; Hsiang, E.L.; Zou, J.; Li, Y.; Yang, Z.; Yang, Q.; Lai, P.C.; Lin, C.L.; Wu, S.T. Advanced liquid crystal devices for augmented reality and virtual reality displays: Principles and applications. Light Sci. Appl. 2022, 11, 161. [Google Scholar] [CrossRef]
- Kramida, G. Resolving the vergence-accommodation conflict in head-mounted displays. IEEE Trans. Vis. Comput. Graph. 2015, 22, 1912–1931. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Hu, Y.; Sundstedt, V. A Systematic Literature Review of Virtual, Augmented, and Mixed Reality Game Applications in Healthcare. ACM Trans. Comput. Healthc. 2022, 3, 1–27. [Google Scholar] [CrossRef]
Work | Type | Main Equipment | Test Sample | Activities | Assessment |
---|---|---|---|---|---|
[35] | AR | Microsoft Kinect 2.0, TV | 25 (16 F, 9 M), age 71.5 ± 4.1 | Avoid walls (muscle training, balance); pick fruits (muscle training, balance); stop rats (gait training). | User experience |
[36] | AR, VR | Microsoft HoloLens, HTC Vive | 11 (6 F, 5 M), age 65–91, MMSE ≥ 24 | Squatting (in AR and VR settings); seated trunk rotation (in a VR setting). | Qualitative study for requirements analysis |
[37] | AR | Microsoft Kinect 2.0, Arduino | 3 (1 F, 2 M), age 43–62 | High knee walking on the spot; shoulder and elbow movements. | Proof of concept prototype testing |
[38] | AR, VR | Samsung HMD Odyssey, Cyberith ODT, Meta2 ARH | 11 physiotherapists | Balloon popping (in AR and VR settings) | Safety, acceptability, and applicability |
[39] | VR | Oculus Quest 1 and 2 | Stakeholders; 5 healthy older adults | Tai Chi movements (warmup); rowing (muscle training); fishing (neck rotations, elbow flexion, elbow extensions). | Participatory design; User experience |
[40] | VR | Oculus Rift, TV, Microsoft Kinect 2.0 | 10 (8 F, 2 M), age 61–75 | Three exercises for upper limbs; three exercises for lower limbs (and balance) | User experience |
[41] | VR | HTC VIVE Focus Plus, DeskCycle 2, Polar OH | 17 (15 F, 2 M), age ≥60 | Eight daily living tasks, six/eight simultaneously required motor and cognitive function | Physical and cognitive performance |
[42] | VR | Oculus Quest 1 | 51 (29 F, 22 M), age ≥65 | Commercial VR exergames (FitXR, Beat Saber, and Dance Central) | Technology acceptance |
this work | AR, VR | Microsoft Kinect 2.0, ARCore, Oculus Quest 2 | 23 (16 F, 7 M), age ≥65, 4 domain experts | Eighteen exercise types integrated into two scenario-based exergame themes, “Life on a Farm” and “Fun Park Tour” | Usability, tolerability, applicability, technology acceptance |
Activity | Motor Skills | Cognitive Skills |
---|---|---|
Purchase of seed sacks | Walking in the room Walking in a circle Movement coordination Bending | Visuospatial orientation Attention Short memory Working memory |
Collection of seed sacks | Walking in the room Movement coordination Bending | Visuospatial orientation Attention Short memory |
Collection of fertilizer sacks | Walking in the room Movement coordination | Visuospatial orientation Attention |
Reading water meter | Walking in the room Bending/squatting | Visuospatial orientation Attention Short memory Working memory |
Crop harvesting | Walking in the room Movement coordination Bending | Visuospatial orientation Attention |
Characteristic | Pre-Pilot Phase | Pilot Phase | |
---|---|---|---|
End Users | Experts | End Users | |
N | 8 | 4 | 15 |
Age (mean ± stdev) | 71.3 ± 4.3 | 38.3 ± 4.9 | 67.5 ± 5.8 |
Gender (female/male) | 6/2 | 2/2 | 10/5 |
Education years | 9.4 ± 3.7 | ≥16 | 11.2 ± 3.4 |
Technology expertise * | 1.8 ± 1.0 | 4 | 2.1 ± 1.3 |
Construct | Item Code | Item |
---|---|---|
Performance Expectancy | PE1 | I find the exergames useful in my daily life. |
PE2 | Using the exergames increases my chances of improving my health. | |
PE3 | Using the exergames helps me in improving my mood. | |
PE4 | Using the exergames increases my self-confidence. | |
Effort Expectancy | EE1 | Learning how to use the exergames is easy for me. |
EE2 | My interaction with the exergames is clear and understandable. | |
EE3 | I find the exergames easy to use. | |
EE4 | It is easy for me to become skillful at using the exergames. | |
Social Influence | SI1 | People who are important to me think that I should use the exergames. |
SI2 | People who influence my behavior think that I should use the exergames. | |
SI3 | People whose opinions that I value prefer that I use the exergames. | |
Facilitating Conditions | FC1 | I have the resources necessary to use the exergames. |
FC2 | I have the knowledge necessary to use the exergames. | |
FC3 | I can get help from others when I have difficulties using the exergames | |
Behavioral Intention | BI1 | I intend to continue using the exergames in the future. |
BI2 | I predict I will use the exergames in my life. | |
BI3 | I plan to continue to use the exergames frequently. |
Construct | Cronbach’s Alpha | Mean (M) | Std. Deviation (SD) |
---|---|---|---|
PE | 0.826 | 4.125 | 0.900 |
EE | 0.769 | 4.000 | 0.834 |
SI | 0.737 | 3.875 | 0.850 |
FC | 0.830 | 3.958 | 0.859 |
BI | 0.740 | 4.042 | 0.751 |
Construct | PE | EE | SI | FC | BI |
---|---|---|---|---|---|
PE | 1.000 | ||||
EE | 0.461 * | 1.000 | |||
SI | 0.126 | 0.664 ** | 1.000 | ||
FC | 0.508 * | 0.971 ** | 0.631 ** | 1.000 | |
BI | 0.825 ** | 0.555 ** | 0.076 | 0.612 ** | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goumopoulos, C.; Drakakis, E.; Gklavakis, D. Feasibility and Acceptance of Augmented and Virtual Reality Exergames to Train Motor and Cognitive Skills of Elderly. Computers 2023, 12, 52. https://doi.org/10.3390/computers12030052
Goumopoulos C, Drakakis E, Gklavakis D. Feasibility and Acceptance of Augmented and Virtual Reality Exergames to Train Motor and Cognitive Skills of Elderly. Computers. 2023; 12(3):52. https://doi.org/10.3390/computers12030052
Chicago/Turabian StyleGoumopoulos, Christos, Emmanouil Drakakis, and Dimitris Gklavakis. 2023. "Feasibility and Acceptance of Augmented and Virtual Reality Exergames to Train Motor and Cognitive Skills of Elderly" Computers 12, no. 3: 52. https://doi.org/10.3390/computers12030052
APA StyleGoumopoulos, C., Drakakis, E., & Gklavakis, D. (2023). Feasibility and Acceptance of Augmented and Virtual Reality Exergames to Train Motor and Cognitive Skills of Elderly. Computers, 12(3), 52. https://doi.org/10.3390/computers12030052