Intraoperative Seizures in Glioma Surgery: Is It Really Only an Intraoperative Issue?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
- Age ≥ 18 years;
- Pre-operative brain MRI suggestive of supratentorial DLGGs;
- No previous surgery;
- No pre-operative chemo- or radiotherapy;
- Objective evaluation of the extent of resection (EOR) on MRI images in DICOM format based on T2-weighted MRI sequences;
- Retrospective review of neurophysiological data (EEGs and ECoGs);
- Neurological follow-up at our Epilepsy Center (Udine, Italy).
2.2. Pre-Operative EEG Recording
2.3. Anesthetic Protocol
2.4. Intraoperative Electrocorticography and Brain Mapping
2.5. Intraoperative Seizure and Management
2.6. Histological and Molecular Analysis
2.7. Neurological Follow-Up
2.8. Statistical Analysis
3. Results
3.1. Study Population and Pre-Operative Characteristics
3.2. Intraoperative and Histological Data
3.3. Post-Operative Seizure, Functional and Oncological Outcomes
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ASMs | anti-seizure medications |
| CNS | central nervous system |
| DLGGs | diffuse low-grade gliomas |
| ECoG | electrocorticography |
| EEG | electroencephalography |
| EOR | extent of resection |
| FISH | fluorescence in situ hybridization |
| FSOKPS | favorable seizure outcomeKarnofsky Performance Status |
| IDH | isocitrate dehydrogenase |
| ILAE | International League Against Epilepsy |
| IHC | immunohistochemistry |
| IoECoGIOM | Intraoperative electrocorticographyintraoperative neurophysiological monitoring |
| IOS | intraoperative seizures |
| MEP | motor evoked potential |
| MGMT | O6-methylguanine-DNA-methyltransferase |
| MRI | magnetic resonance imaging |
| mRS | modified Rankin Scale |
| OR | odds ratio |
| POS | post-operative seizures |
| SE | status epilepticus |
| TIVA | total intravenous anesthesia |
| TRE | tumor-related epilepsy |
| WHO | World Health Organization |
References
- Nossek, E.; Matot, I.; Shahar, T.; Barzilai, O.; Rapoport, Y.; Gonen, T.; Sela, G.; Grossman, R.; Korn, A.; Hayat, D.; et al. Intraoperative seizures during awake craniotomy: Incidence and consequences: Analysis of 477 patients. Neurosurgery 2013, 73, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Spena, G.; Schucht, P.; Seidel, K.; Rutten, G.J.; Freyschlag, C.F.; D’Agata, F.; Costi, E.; Zappa, F.; Fontanella, M.; Fontaine, D.; et al. Brain Tumors in eloquent areas: A European multicenter survey of intraoperative mapping techniques, intraoperative seizures occurrence, and antiepileptic drug prophylaxis. Neurosurg. Rev. 2017, 40, 287–298. [Google Scholar] [CrossRef]
- Lettieri, C.; Ius, T.; Verriello, L.; Budai, R.; Isola, M.; Valente, M.; Skrap, M.; Gigli, G.L.; Pauletto, G. Risk Factors for Intraoperative Seizures in Glioma Surgery: Electrocoricography Matters. J. Clin. Neurophysiol. 2023, 40, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Deana, C.; Pez, S.; Ius, T.; Furlan, D.; Nilo, A.; Isola, M.; De Martino, M.; Mauro, S.; Verriello, L.; Lettieri, C.; et al. Effect of Dexmedetomidine versus Propofol on Intraoperative Seizure Onset During Awake Craniotomy. A Retrospective Study. World Neurosurg. 2023, 172, e428–e437. [Google Scholar] [CrossRef]
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; Peltola, J.; Roulet Perez, E.; et al. Operational classification of seizure types by the international league against epilepsy: Position paper of the ILAE commission for classification and terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef]
- Beghi, E.; Carpio, A.; Forsgren, L.; Hesdorffer, D.C.; Malmggìren, K.; Sander, J.W.; Tomson, T.; Auser, W.A. Recommendation for a definition of acute symptomatic seizure. Epilepsia 2010, 51, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Ius, T.; Mazzucchi, E.; Tomasino, B.; Pauletto, G.; Sabatino, G.; Della Pepa, G.M.; La Rocca, G.; Battistella, C.; Olivi, A.; Skrap, M. Multimodal integrated approaches in low grade glioma surgery. Sci. Rep. 2021, 11, 9964. [Google Scholar] [CrossRef]
- Palmini, A.; Gambardella, A.; Andermann, F.; Dubeau, F.; da Costa, J.C.; Olivier, A.; Tampieri, D.; Gloor, P.; Quesney, F.; Andermann, E.; et al. Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann. Neurol. 1995, 37, 476–487. [Google Scholar] [CrossRef]
- Hirsch, L.J.; Fong, M.W.; Leitinger, M.; LaRoche, S.M.; Beniczky, S.; Abend, N.S.; Lee, J.W.; Wusthoff, C.J.; Hahn, C.D.; Westover, M.B.; et al. American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2021 Version. J. Clin. Neurophysiol. 2021, 38, 1–29. [Google Scholar] [CrossRef]
- Preusser, M.; Bergho, A.S.; Manzl, C.; Filipits, M.; Weinhäusel, A.; Pulverer, W.; Dieckmann, K.; Widhalm, G.; Wöhrer, A.; Knosp, E.; et al. Clinical Neuropathology practice news 1-2014: Pyrosequencing meets clinical and analytical performance criteria for routine testing of MGMT promoter methylation status in glioblastoma. Clin. Neuropathol. 2014, 33, 6–14. [Google Scholar] [CrossRef]
- Engel, J., Jr.; Burchfiel, J.; Ebersole, J.; Gates, J.; Gotman, J.; Homan, R.; Ives, J.; King, D.; Lieb, J.; Sato, S.; et al. Long-term monitoring for epilepsy. Report of an IFCN committee. Electroencephalogr. Clin. Neurophysiol. 1993, 87, 437–458. [Google Scholar] [CrossRef] [PubMed]
- Karnofsky, D.A.; Burchenal, J.H. The clinical evaluation of chemotherapeutic agents in cancer. In Evaluation of Chemotherapeutic Agents; MacLeod, C.M., Ed.; Columbia University Press: New York, NY, USA, 1949; p. 196. [Google Scholar]
- Yates, J.; Chalmer, B.; McKegney, P. Evaluation of patietns with advanced cancer using the Karnofsky performance status. Cancer 1980, 45, 2220–2224. [Google Scholar] [CrossRef] [PubMed]
- Rankin, L. Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scott. Med. J. 1957, 2, 200–215. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, P.; Wanf, X.; Liu, Y.; Laing, R.; Jiang, S.; Mao, Q. Intraoperative seizures and seizures outcome in patients undergoing awake craniotomy. J. Neurosurg Sci. 2019, 63, 301–307. [Google Scholar] [CrossRef]
- Mauritz, M.; Hirsh, L.J.; Camfield, P.; Chin, R.; Nardone, R.; Lattanzi, S.; Trinka, E. Acute symptomatic seizures: An educational, evidence-based review. Epileptic Disord. 2022, 24, 26–49. [Google Scholar] [CrossRef]
- Chassaux, F.; Landre, E. Prevention and management of postoperative seizures in neuro-oncology. Neurochirurgie 2017, 63, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Feyissa, A.M.; Worrell, G.A.; Tatum, W.O.; Chaichana, K.L.; Jentoft, M.E.; Cazares, H.G.; Entekin-Taner, N.; Rosenfeld, S.S.; ReFaei, K.; Quinones-Hinojosa, A. Potential influence of IDH1 mutation and MGMT gene promoter methyla-tion on glioma-related preoperative seizures and postoperative seizure control. Seizure 2019, 69, 283–289. [Google Scholar] [CrossRef]
- Skardelly, M.; Brendle, E.; Noell, S.; Schittenhelm, J.; Bisdas, S.; Meisner, C.; Rona, S.; Tatabiga, M.S.; Tabatabai, G. Predictors of preoperative and early postoperative seizures in patients withintra-axial primary and metastatic brain tumors: A retrospective observational single center study. Ann. Neurol. 2015, 78, 917–928. [Google Scholar] [CrossRef]
- Yang, P.; Liang, T.; Zhang, C.; Cai, J.; Zhang, W.; Chen, B.; Qiu, X.; Yao, K.; Li, G.; Wang, H.; et al. Clinicopathological factors predictive of postoperative seizures in patients with gliomas. Seizure 2016, 35, 93–99. [Google Scholar] [CrossRef]
- Abecassis, Z.A.; Ayer, A.B.; Tampler, J.W.; Yerneni, K.; Murthy, N.K.; Tate, M.C. Analysis of risk factors and clinical sequelae of direct electrical cortical stimulation-induced seizures and after-discharges in patients undergoing awake mapping. J. Neurosurg. 2021, 134, 1610–1617. [Google Scholar] [CrossRef]
- Jehi, L. The epileptogenic zone: Concept and definition. Epilepsy. Curr. 2018, 18, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, Z.; van ’t Klooster, M.A.; Van Der Salm, S.M.; Leijten, F.S.; Braun, K.P.; Zijlmans, M. Seizure outcome after electrocorticography-tailored epilepsy surgery. Neurology 2024, 102, e209430. [Google Scholar] [CrossRef]
- Widdess-Walsh, P.; Jeha, L.; Nair, D.; Kotagal, P.; Bingaman, W.; Najm, I. Subdural electrode analysis in focal cortical dysplasia: Predictors of surgical outcome. Neurology 2007, 69, 660–667. [Google Scholar] [CrossRef]
- van’t Klooster, M.A.; Van Klink, N.E.; Leijten, F.S.; Zelmann, R.; Gebbink, T.A.; Gosselaar, P.H.; Braun, K.P.; Huiskamp, G.J.; Zijlmans, M. Residual fast ripples in the intraoperative corticogram predict epilepsy surgery outcome. Neurology 2015, 85, 120–128. [Google Scholar] [CrossRef]
- Conte, V.; Carabba, G.; Magni, L.; L’Acqua, C.; Magnoni, S.; Bello, L.; Colombo, A.; Stocchetti, N. Risk of perioperative seizures in patients undergoing craniotomy with intraoperative brain mapping. Minerva Anestesiol. 2015, 81, 379–388. [Google Scholar]
- Roca, E.; Pallud, J.; Guerrini, F.; Panciani, P.P.; Fontanella, M.; Spena, G. Stimulation-related intraoperative seizures during awake surgery: A review of available evidences. Neurosurg. Rev. 2020, 43, 87–93. [Google Scholar] [CrossRef]
- Marku, M.; Rasmussen, B.K.; Belmonte, F.; Wreford Andersen, E.A.; Johanssen, C.; Envold Bidstrup, P. Postoperative epilepsy and survival in glioma patients: A nationwide population-based cohort study from 2009 to 2018. J. Neuro-Oncol. 2022, 157, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Toledo, M.; Sarria-Estrada, S.; Quintana, M.; Maldonado, X.; Martinez-Ricarte, F.; Rodon, J.; Auger, C.; Salas-Puig, J.; Santamarina, E.; Martinez-Saez, E. Prognostic implications of epilepsy in glioblastomas. Clin. Neurol. Neurosurg. 2015, 139, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Mazzucchi, E.; Vollono, C.; Pauletto, G.; Lettieri, C.; Budai, R.; Gigli, G.L.; Sabatino, G.; La Rocca, G.; Skrap, M.; Ius, T. The persistence of seizures after tumor resection negatively affects survival in low-grade glioma patients: A clinical retrospective study. J. Neurol. 2022, 269, 2627–2633. [Google Scholar] [CrossRef]
- Pauletto, G.; Nilo, A.; Lettieri, C.; Verriello, L.; Tomasino, B.; Gigli, G.L.; Skrap, M.; Ius, T. Pre- and Post-surgical Poor Seizure Control as Hallmark of Malignant Progression in Patients with Glioma? Front. Neurol. 2022, 13, 890857. [Google Scholar] [CrossRef]
- Pallud, J.; Huberfeld, G.; Dezamis, E.; Peeters, S.; Moiraghi, A.; Gavaret, M.; Guinard, E.; Dhermain, F.; Varlet, P.; Oppenheim, C.; et al. Effect of Levetiracetam Use Duration on Overall Survival of Isocitrate Dehydrogenase Wild-Type Glioblastoma in Adults: An Observational Study. Neurology 2022, 98, e125–e140. [Google Scholar] [CrossRef] [PubMed]
- Izumoto, S.; Miyauchi, M.; Tasaki, T.; Okuda, T.; Nakagawa, N.; Nakano, N.; Kato, A.; Fujita, M. Seizures and tumor progression in glioma patients with uncontrollable epilepsy treated with perampanel. Anticancer Res. 2018, 38, 4361–4366. [Google Scholar] [CrossRef]
- Salmaggi, A.; Corno, C.; Maschio, M.; Donzelli, S.; D’Urso, A.; Perego, P.; Ciusani, E. Synergistic effect of perampamel and temozolomide in human glioma cell lines. J. Pers. Med. 2021, 11, 390. [Google Scholar] [CrossRef] [PubMed]
- Aronica, E.; Ciusani, E.; Coppola, A.; Costa, C.; Russo, E.; Salmaggi, A.; Perversi, F.; Maschio, M. Epilepsy and brain tumors: Two sides of the same coin. J. Neurol. Sci. 2023, 446, 120584. [Google Scholar] [CrossRef]
- Tobochnik, S.; Dorotan, M.K.C.; Ghosh, H.S.; Lapinskas, E.; Vogelzang, J.; Reardon, D.A.; Ligon, K.L.; Bi, W.L.; Smirnakis, S.M.; Lee, J.W. Glioma genetic profiles associated with electrophysiologic hyperexcitability. Neuro. Oncol. 2024, 26, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Neal, A.; Kwan, P.; O’Brien, T.J.; Buckland, M.E.; Gonzales, M.; Morokoff, A. IDH1 and IDH2 mutations in postoperative diffuse glioma-associated epilepsy. Epilepsy Behav. 2018, 78, 30–36. [Google Scholar] [CrossRef]
- Song, L.; Quan, X.; Chen, C.; Chen, L.; Zhou, J. Correlation between tumor molecular markers and perioperative epilepsy in patients with glioma: A systematic review and meta-analysis. Front. Neurol. 2021, 12, 692751. [Google Scholar] [CrossRef]
- Pallud, J.; Le Van Quyen, M.; Bielle, F.; Pellegrino, C.; Varlet, P.; Labussiere, M.; Cresto, N.; Dieme, M.J.; Baulac, M.; Duyckaerts, C.; et al. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci. Transl. Med. 2014, 6, 244ra89. [Google Scholar] [CrossRef]
- Vezzani, A.; Balosso, S.; Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol. 2019, 15, 459–472. [Google Scholar] [CrossRef]
- Venkatesh, H.S.; Morishita, W.; Geraghty, A.C.; Silverbush, D.; Gillespie, S.M.; Arzt, M.; Tam, L.T.; Espenel, C.; Ponnuswami, A.; Ni, L.; et al. Electrical and synaptic integration of glioma into neural circuits. Nature 2019, 573, 539–545. [Google Scholar] [CrossRef]
- Venkataramani, V.; Tanev, D.I.; Strahle, C.; Studier-Fischer, A.; Fankhauser, L.; Kessler, T.; Körber, C.; Kardorff, M.; Ratliff, M.; Xie, R.; et al. Glutamatergic synaptic input to glioma cells drives brain tumor progression. Nature 2019, 573, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Maschio, M.; Aguglia, U.; Avanzini, G.; Banfi, P.; Buttinelli, C.; Capovilla, G.; Casazza, M.M.L.; Colicchio, G.; Coppola, A.; Costa, C.; et al. Management of epilepsy in brain tumors. Neurol. Sci. 2019, 40, 2217–2234. [Google Scholar] [CrossRef] [PubMed]
| Variables | |
|---|---|
| No. of patients | 154 |
| Sex, n (%) | |
| Male | 95 (61.7) |
| Female | 59 (38.3) |
| Age, (years) | |
| Mean (±DS) | 38.90 (±11.30) |
| Range | 15–73 |
| Seizure Onset | |
| Focal seizures | 59 (38.3) |
| Focal to bilateral tonic-clonic seizures | 95 (61.7) |
| Seizure Types | |
| Motor | 105 (68.2) |
| Non-motor | 49 (31.8) |
| Autonomic | 4 (2.6) |
| Cognitive | 13 (8.4) |
| Emotional | 3 (1.9) |
| Sensory | 18 (11.7) |
| Pre-operative seizures frequency | |
| Monthly | 91 (59.1) |
| Weekly | 52 (33.8) |
| Daily | 11 (7.1) |
| ASM regimen | |
| Monotherapy | 127 (82.5) |
| Polytherapy | 27 (17.5) |
| Pre-operative EEG features | |
| Normal | 70 (45.5) |
| Slow | 44 (28.6) |
| Epileptic | 40 (26) |
| Tumor side | |
| Left | 88 (57.1) |
| Right | 66 (42.9) |
| Tumor site | |
| Frontal | 52 (33.8) |
| Parietal | 14 (9.1) |
| Temporal | 24 (15.6) |
| Insular | 64 (41.6) |
| Pre-operative tumor volume (T2-w MRI images-cm3) | |
| Mean (±DS) | 55.28 (±38.19) |
| Range | 6–250 |
| EOR % (range) | 84.25 ± 15.29 (28–100) |
| Molecular Class | |
| Oligodendroglioma IDH1/2 mutated 1p-19q codeleted | 44 (28.6) |
| Diffuse astrocytoma IDH1/2 mutated | 95 (61.7) |
| Diffuse astrocytoma IDH1/2 wild-type | 15 (9.7) |
| MGMT promoter methylation | |
| Yes | 135 (87.7) |
| No | 19 (12.3) |
| WHO grade | |
| Grade II | 139 (90.3) |
| Grade III | 15 (9.7) |
| Anesthesiologic Protocol | |
| Awake surgery | 112 (72.7) |
| General anesthesia | 42 (27.3) |
| Intraoperative ECoG features | |
| Normal | 47 (30.5) |
| Slow | 26 (16.9) |
| Epileptic | 81 (52.6) |
| Intraoperative seizures (IOS) | |
| Yes | 40 (26) |
| No | 114 (74) |
| Early post-operative seizures (POS) | |
| Yes | 28 (18.5) |
| No | 123 (81.5) |
| (a) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| IOS | Univariate Analysis | IOS | Multivariate Analysis | |||||||
| NO | YES | O.R. | CI (95%) | p | NO | YES | O.R. | CI (95%) | p | |
| Variables | 114 | 40 | ||||||||
| Sex, n (%) | ||||||||||
| Male | 70 (61.4) | 25 (62.5) | 0.955 | 0.454–2.007 | 0.902 | |||||
| Female | 44 (38.6) | 15 (37.5) | ||||||||
| Age (mean ± DS) | 38.07 ± 10.18 | 41.88 ± 14.76 | 1.008 | 0.969–1.049 | 0.677 | |||||
| Tumor site, n (%) | ||||||||||
| Frontal (pre-central) | 33 (28.9) | 19 (47.5) | ||||||||
| Parietal (post-central) | 12 (10.6) | 2 (5) | 1.607 | 0.617–4.184 | 0.332 | |||||
| Temporal | 18 (15.8) | 6 (15) | ||||||||
| Insular | 51 (44.7) | 13 (32.5) | ||||||||
| Pre-operative epilepsy features | ||||||||||
| Seizure type, n (%) | ||||||||||
| Motor | 73 (64) | 32 (80) | 0.445 | 0.188–1.056 | 0.062 | |||||
| Non motor | 41 (36) | 8 (20) | ||||||||
| Seizure Onset, n (%) | ||||||||||
| Focal | 47 (41.2) | 12 (30) | 1.637 | 0.756–3.543 | 0.209 | |||||
| Focal to bilateral tonic clonic | 67 (58.8) | 28 (70) | ||||||||
| ASM regimen, n (%) | ||||||||||
| Monotherapy | 94 (82.5) | 33 (82.5) | 0.997 | 0.386–2.572 | 0.995 | |||||
| Polytherapy | 20 (17.5) | 7 (17.5) | ||||||||
| Duration, n (%) | ||||||||||
| ≥1 year | 97 (8.51) | 36 (90) | 1.577 | 0.497–5.003 | 0.436 | |||||
| <1 year | 17 (14.9) | 4 (10) | ||||||||
| EOR (mean ± DS) | 84.33 (±15.14) | 84.00 (±15.92) | 1.001 | 0.978–1.025 | 0.905 | |||||
| Pre-operative EEG, n (%) | ||||||||||
| Not epileptiform | 84 (73.7) | 31 (77.5) | 0.813 | 0.347–1.904 | 0.633 | |||||
| Epileptiform | 30 (26.3) | 9 (22.5) | ||||||||
| EcoG, n (%) | ||||||||||
| Not Epileptiform | 64 (56.1) | 9 (22.5) | 4.409 | 1.924–10.103 | <0.001 | 6.076 | 2.250–16.409 | <0.001 | ||
| Epileptiform | 50 (43.9) | 31 (77.5) | ||||||||
| (b) | ||||||||||
| Early POS | Univariate Analysis | Early POS | Multivariate Analysis | |||||||
| NO | YES | O.R. | CI (95%) | p | NO | YES | O.R. | CI (95%) | p | |
| Variables | 123 | 28 | ||||||||
| Sex, n (%) | ||||||||||
| Male | 76 (68.3) | 17 (60.7) | 1.046 | 0.451–2.426 | 0.916 | |||||
| Female | 47 (37.3) | 11 (39.3) | ||||||||
| Age (mean ± DS) | 38.07 ± 10.18 | 41.88 ± 14.76 | 1.072 | 0.391–2.937 | 0.338 | |||||
| Tumor site, n (%) | ||||||||||
| Frontal (pre-central) | 45 (36.6) | 6 (21.4) | 1.706 | 0.617–4.184 | 0.036 | 5.177 | 0.950–28.206 | 0.06 | ||
| Parietal (post-central) | 10 (8.1) | 4 (14.3) | ||||||||
| Temporal | 22 (17.9) | 1 (3.6) | ||||||||
| Insular | 46 (37.4) | 17 (60.7) | ||||||||
| Pre-operative epilepsy features | ||||||||||
| Seizure type, n (%) | ||||||||||
| Motor | 87 (70.7) | 16 (51.1) | 1.813 | 0.780–4.212 | 0.163 | |||||
| Non motor | 36 (29.3) | 12 (42.9) | ||||||||
| ASM regimen, n (%) | ||||||||||
| Monotherapy | 101 (82.1) | 23 (82.1) | 0.998 | 0.342–2.914 | 0.997 | |||||
| Polytherapy | 22 (17.9) | 5 (17.9) | ||||||||
| Duration, n (%) | ||||||||||
| ≥1 year | 109 (88.6) | 21 (75) | 0.385 | 0.139–1.069 | 0.060 | |||||
| <1 year | 14 (11.4) | 7 (25) | ||||||||
| EOR (mean ± DS) | 83.93 (±15.98) | 84.86 (±12.48) | 0.996 | 0.969–1.024 | 0.772 | |||||
| Pre-operative EEG, n (%) | ||||||||||
| Not epileptiform | 96 (78) | 16 (57.1) | 2.667 | 1.127–6.312 | 0.023 | 2.009 | 0.685–5.897 | 0.204 | ||
| Epileptiform | 27 (22) | 12 (42.9) | ||||||||
| EcoG, n (%) | ||||||||||
| Not Epileptiform | 66 (53.6) | 5 (17.8) | 5.326 | 1.902–14.919 | <0.001 | 6.005 | 1.754–20.560 | 0.004 | ||
| Epileptiform | 57 (46.4) | 23 (82.2) | ||||||||
| Intraoperative seizures, n (%) | ||||||||||
| Yes No | 32 (26) 91 (74) | 8 (28.6) 20 (71.4) | 1.137 | 0.456–2836 | 0.782 | |||||
| (a) | ||||||
|---|---|---|---|---|---|---|
| Seizure Outcome at 12 Months | Seizure Outcome at 24 Months | |||||
| O.R. | CI (95%) | p | O.R. | CI (95%) | p | |
| Variables | ||||||
| Age | 1.042 | 0.995–1.092 | 0.078 | 1.045 | 0.003–5.662 | 0.047 |
| Seizure type (motor) | 4.709 | 1.548–14.321 | 0.007 | 1.048 | 0.381–2.886 | 0.928 |
| ASM regimen (polytherapy) | 5.278 | 1.539–18.108 | 0.008 | 1.042 | 0.319–3.407 | 0.945 |
| Epilepsy Duration (<1 year) | 0.668 | 0.162–2.750 | 0.577 | 1.142 | 0.310–4.205 | 0.842 |
| Pre-operative EEG (epileptiform) | 1.258 | 0.430–3.682 | 0.675 | 1.329 | 0.498–3.548 | 0.570 |
| EcoG (epileptiform) | 5.099 | 1.681–15.464 | 0.004 | 4.615 | 1.675–12.709 | 0.003 |
| EOR | 0.967 | 0.939–0.996 | 0.027 | 0.973 | 0.946–1.000 | 0.048 |
| WHO grade (II vs. III) | 1.548 | 0.262–9.145 | 0.630 | 1.606 | 0.284–9.074 | 0.592 |
| IOS (yes) | 0.636 | 0.220–1.837 | 0.403 | 1.428 | 0.521–3.917 | 0.488 |
| Early POS (yes) | 5.681 | 1.673–19.283 | 0.005 | 0.408 | 0.139–1.195 | 0.102 |
| KPS (≥80) at 1 y and 2 y | 0.471 | 0.074–3.010 | 0.426 | 1.792 | 0.420–7.655 | 0.431 |
| mRS (<2) at 1 y and 2 y | 2.072 | 0.506–8.486 | 0.311 | 3.584 | 1.051–12.224 | 0.041 |
| (b) | ||||||
| Functional Outcome (KPS) at 12 Months | Functional Outcome (KPS) at 24 Months | |||||
| O.R. | CI (95%) | p | O.R. | CI (95%) | p | |
| Variables | ||||||
| Age | 1.058 | 0.9986–1.136 | 0.117 | 1.044 | 0.977–1.116 | 0.201 |
| Seizure type (motor) | 0.452 | 0.068–3.009 | 0.412 | 0.398 | 0.068–2.333 | 0.307 |
| ASM regimen (polytherapy) | 1.103 | 0.151–8.044 | 0.923 | 1.126 | 0.187–6.784 | 0.897 |
| Epilepsy Duration (<1 year) | 7.036 | 0.823–60.158 | 0.075 | 3.984 | 0.471–33.699 | 0.204 |
| EOR | 1.032 | 0.974–1.0.93 | 0.287 | 1.006 | 0.960–1.054 | 0.797 |
| WHO grade (II vs. III) | 3.722 | 0.629–22.038 | 0.181 | 0.594 | 0.035–10.141 | 0.719 |
| IOS (yes) | 0.749 | 0.128–4.371 | 0.748 | 1.025 | 0.214–4.922 | 0.975 |
| Early POS (yes) | 0.380 | 0.056–2.595 | 0.324 | 0.924 | 0.196–4.349 | 0.920 |
| Engel class (Ia) at 1 y and 2 y | 0.612 | 0.103–3.619 | 0.588 | 1.553 | 0.361–6.684 | 0.554 |
| mRS (<2) at 1 y and 2 y | 122.751 | 16.756–899.274 | <0.001 | 198.926 | 21.248–1862.359 | <0.001 |
| (c) | ||||||
| Functional Outcome (mRS) at 12 Months | Functional Outcome (mRS) at 24 Months | |||||
| O.R. | CI (95%) | p | O.R. | CI (95%) | p | |
| Variables | ||||||
| Age | 0.997 | 0.946–1.051 | 0.916 | 0.978 | 0.920–1.039 | 0.475 |
| Seizure type (motor) | 0.893 | 0.254–3.142 | 0.861 | 0.827 | 0.225–3.044 | 0.775 |
| ASM regimen (polytherapy) | 1.089 | 0.202–5.874 | 0.921 | 0.896 | 0.169–4.758 | 0.897 |
| Epilepsy Duration (<1 year) | 0.366 | 0.058–2.296 | 0.283 | 0.427 | 0.063–2.903 | 0.384 |
| EOR | 0.977 | 0.941–1.013 | 0.210 | 0.980 | 0.942–1.019 | 0.315 |
| WHO grade (II vs. III) | 0.879 | 0.107–7.253 | 0.905 | 1.514 | 0.134–17.174 | 0.738 |
| IOS (yes) | 1.907 | 0.474–7.668 | 0.363 | 1.520 | 0.402–5.752 | 0.538 |
| Early POS (yes) | 0.378 | 0.095–1.504 | 0.168 | 0.384 | 0.099–1.485 | 0.165 |
| Engel class (Ia) at 1 y and 2 y | 2.282 | 0.599–8.696 | 0.227 | 3.367 | 0.990–11.449 | 0.052 |
| KPS (≥80) at 1 y and 2 y | 94.976 | 14.860–607.044 | <0.001 | 202.139 | 20.384–2004.501 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauletto, G.; Nilo, A.; Lettieri, C.; Valente, M.; Vindigni, M.; Skrap, M.; Ius, T.; Verriello, L. Intraoperative Seizures in Glioma Surgery: Is It Really Only an Intraoperative Issue? Cancers 2025, 17, 1478. https://doi.org/10.3390/cancers17091478
Pauletto G, Nilo A, Lettieri C, Valente M, Vindigni M, Skrap M, Ius T, Verriello L. Intraoperative Seizures in Glioma Surgery: Is It Really Only an Intraoperative Issue? Cancers. 2025; 17(9):1478. https://doi.org/10.3390/cancers17091478
Chicago/Turabian StylePauletto, Giada, Annacarmen Nilo, Christian Lettieri, Mariarosaria Valente, Marco Vindigni, Miran Skrap, Tamara Ius, and Lorenzo Verriello. 2025. "Intraoperative Seizures in Glioma Surgery: Is It Really Only an Intraoperative Issue?" Cancers 17, no. 9: 1478. https://doi.org/10.3390/cancers17091478
APA StylePauletto, G., Nilo, A., Lettieri, C., Valente, M., Vindigni, M., Skrap, M., Ius, T., & Verriello, L. (2025). Intraoperative Seizures in Glioma Surgery: Is It Really Only an Intraoperative Issue? Cancers, 17(9), 1478. https://doi.org/10.3390/cancers17091478

