Establishing Pancreatic Cancer Organoids from EUS-Guided Fine-Needle Biopsy Specimens
Simple Summary
Abstract
1. Introduction
2. Development History of Pancreatic Cancer Organoids
3. Key Technical Steps for Successfully Establishing Pancreatic Cancer Organoids via EUS-FNA/FNB
3.1. Pancreatic Cancer Puncture
3.2. Establishing Pancreatic Cancer Organoids
3.3. Identifying Pancreatic Cancer Organoids
4. Factors Influencing the Success of PDAC Organoid Construction
4.1. Impact of Sample Quality on the Successful Construction of Pancreatic Cancer Organoids
4.2. Impact of Medium and Additive Selection on the Successful Construction of Pancreatic Cancer Organoids
4.3. Effects of FNA vs. FNB on the Successful Construction of Pancreatic Cancer Organoids
4.4. Influence of Pathological Grade on the Success Rate of Pancreatic Cancer Organoid Construction
4.5. Impact of ROSE on the Success Rate of Pancreatic Cancer Organoid Construction
5. Applications of Pancreatic Cancer Organoids
5.1. Application of Pancreatic Cancer Organoids in the Study of Disease Occurrence and Development Mechanisms
5.2. Application of Pancreatic Cancer Organoids in Drug Screening and the Study of Drug Resistance Mechanisms
5.3. Role of Pancreatic Cancer Organoids in Personalized Medicine and Gene Editing Research
5.4. Application of Pancreatic Organoids in Regenerative Medicine and Tissue Engineering
6. Development Prospects of Pancreatic Cancer Organoids
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Full Name | Abbreviation |
Patient-derived organoids | PDOs |
Endoscopic ultrasound-guided fine-needle aspiration/biopsy | EUS-FNA/FNB |
Pancreatic ductal adenocarcinoma | PDAC |
Patient-derived xenografts | PDXs |
Rapid on-site evaluation | ROSE |
Residual samples from saline flushing | RSSF |
Fine-needle aspiration | FNA |
Fine-needle biopsy | FNB |
Hematoxylin and eosin | HE |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Diagnosis, E.; Treatment Group to CoCMA. Expert consensus of Oncology Committee of Chinese Medical Association in early diagnosis and treatment of pancreatic cancer. J. Clin. Hepatol. 2020, 36, 2675–2680. [Google Scholar]
- Avior, Y.; Sagi, I.; Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol. 2016, 17, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Sereti, E.; Karagianellou, T.; Kotsoni, I.; Magouliotis, D.; Kamposioras, K.; Ulukaya, E.; Sakellaridis, N.; Zacharoulis, D.; Dimas, K. Patient Derived Xenografts (PDX) for personalized treatment of pancreatic cancer: Emerging allies in the war on a devastating cancer? J. Proteom. 2018, 188, 107–118. [Google Scholar] [CrossRef]
- Huch, M.; Gehart, H.; van Boxtel, R.; Hamer, K.; Blokzijl, F.; Verstegen, M.M.; Ellis, E.; van Wenum, M.; Fuchs, S.A.; de Ligt, J.; et al. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver. Cell 2014, 160, 299–312. [Google Scholar] [CrossRef]
- Smith, E.; Cochrane, W.J. Cystic organoid teratoma; report of a case. Can. Med. Assoc. J. 1946, 55, 151. [Google Scholar]
- Sato, T.; Vries, R.G.; Snippert, H.J.; Van De Wetering, M.; Barker, N.; Stange, D.E.; Van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 Stem Cells Build Crypt-Villus Structures in Vitro without a Mesenchymal Niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef]
- Huch, M.; Bonfanti, P.; Boj, S.F.; Sato, T.; Loomans, C.J.M.; Van De Wetering, M.; Sojoodi, M.; Li, V.S.W.; Schuijers, J.; Gracanin, A.; et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013, 32, 2708–2721. [Google Scholar] [CrossRef]
- Boj, S.F.; Hwang, C.-I.; Baker, L.A.; Chio, I.I.C.; Engle, D.D.; Corbo, V.; Jager, M.; Ponz-Sarvise, M.; Tiriac, H.; Spector, M.S.; et al. Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell 2015, 160, 324–338. [Google Scholar] [CrossRef]
- Romero-Calvo, I.; Weber, C.R.; Ray, M.; Brown, M.; Kirby, K.; Nandi, R.K.; Long, T.M.; Sparrow, S.M.; Ugolkov, A.; Qiang, W.; et al. Human Organoids Share Structural and Genetic Features with Primary Pancreatic Adenocarcinoma Tumors. Mol. Cancer Res. 2019, 17, 70–83. [Google Scholar] [CrossRef]
- Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic Adenocarcinoma. N. Engl. J. Med. 2014, 371, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Morganti, A.G.; Massaccesi, M.; La Torre, G.; Caravatta, L.; Piscopo, A.; Tambaro, R.; Sofo, L.; Sallustio, G.; Ingrosso, M.; Macchia, G.; et al. A Systematic Review of Resectability and Survival After Concurrent Chemoradiation in Primarily Unresectable Pancreatic Cancer. Ann. Surg. Oncol. 2009, 17, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Pu, N.; Thompson, E.D.; Miao, Y.; Wolfgang, C.L.; Yu, J. Improved Assessment of Response Status in Patients with Pancreatic Cancer Treated with Neoadjuvant Therapy Using Somatic Mutations and Liquid Biopsy Analysis. Clin. Cancer Res. 2020, 27, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, Y.; Ohtsuka, T.; Kimura, R.; Matsuda, R.; Mori, Y.; Nakata, K.; Kakihara, D.; Fujimori, N.; Ohno, T.; Oda, Y.; et al. Neoadjuvant Chemotherapy with Gemcitabine Plus Nab-Paclitaxel for Borderline Resectable Pancreatic Cancer Potentially Improves Survival and Facilitates Surgery. Ann. Surg. Oncol. 2019, 26, 1528–1534. [Google Scholar] [CrossRef]
- Yoo, C.; Hwang, I.; Song, T.J.; Lee, S.S.; Jeong, J.H.; Park, D.H.; Seo, D.W.; Lee, S.K.; Kim, M.-H.; Byun, J.H.; et al. FOLFIRINOX in borderline resectable and locally advanced unresectable pancreatic adenocarcinoma. Ther. Adv. Med Oncol. 2020, 12, 1758835920953294. [Google Scholar] [CrossRef]
- Eloubeidi, M.A.; Chen, V.K.; A Eltoum, I.; Jhala, D.; Chhieng, D.C.; Jhala, N.; Vickers, S.M.; Wilcox, M.C. Endoscopic Ultrasound–Guided Fine Needle Aspiration Biopsy of Patients With Suspected Pancreatic Cancer: Diagnostic Accuracy and Acute and 30-Day Complications. Am. J. Gastroenterol. 2003, 98, 2663–2668. [Google Scholar] [CrossRef]
- Seppälä, T.T.; Zimmerman, J.W.; Sereni, E.; Plenker, D.; Suri, R.; Rozich, N.; Blair, A.; Thomas, D.L.I.B.; Teinor, J.B.; Javed, A.; et al. Patient-derived Organoid Pharmacotyping is a Clinically Tractable Strategy for Precision Medicine in Pancreatic Cancer. Ann. Surg. 2020, 272, 427–435. [Google Scholar] [CrossRef]
- Lacomb, J.F.; Plenker, D.; Tiriac, H.; Bucobo, J.C.; D’souza, L.S.; Khokhar, A.S.; Patel, H.; Channer, B.; Joseph, D.; Wu, M.; et al. Single-Pass vs 2-Pass Endoscopic Ultrasound-Guided Fine-Needle Biopsy Sample Collection for Creation of Pancreatic Adenocarcinoma Organoids. Clin. Gastroenterol. Hepatol. 2020, 19, 845–847. [Google Scholar] [CrossRef]
- Grossman, J.E.; Muthuswamy, L.; Huang, L.; Akshinthala, D.; Perea, S.; Gonzalez, R.S.; Tsai, L.L.; Cohen, J.; Bockorny, B.; Bullock, A.J.; et al. Organoid Sensitivity Correlates with Therapeutic Response in Patients with Pancreatic Cancer. Clin. Cancer Res. 2021, 28, 708–718. [Google Scholar] [CrossRef]
- Tiriac, H.; Bucobo, J.C.; Tzimas, D.; Grewel, S.; Lacomb, J.F.; Rowehl, L.M.; Nagula, S.; Wu, M.; Kim, J.; Sasson, A.; et al. Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment. Gastrointest. Endosc. 2018, 87, 1474–1480. [Google Scholar] [CrossRef]
- Ishida, Y.; Tsunoda, T.; Hamada, Y.; Tsuchiya, N.; Koga, T.; Kitaguchi, T.; Matsumoto, K.; Matsumoto, S.; Sasaki, T.; Nakashima, R.; et al. Standardized Methods Using EUS-guided Fine-needle Biopsy and a Minimal Medium Creates Three Pancreatic Cancer Organoids. Anticancer Res. 2022, 42, 4103–4109. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Haque, M.R.; Mirbagheri, S.; Barlass, U.; Gilbert, D.Z.; Amin, J.; Singh, A.; Naqib, A.; Bishehsari, F. Multiplex Patient-Based Drug Response Assay in Pancreatic Ductal Adenocarcinoma. Biomedicines 2021, 9, 705. [Google Scholar] [CrossRef] [PubMed]
- Beutel, A.K.; Schütte, L.; Scheible, J.; Roger, E.; Müller, M.; Perkhofer, L.; Kestler, A.M.T.U.; Kraus, J.M.; Kestler, H.A.; Barth, T.F.E.; et al. A Prospective Feasibility Trial to Challenge Patient–Derived Pancreatic Cancer Organoids in Predicting Treatment Response. Cancers 2021, 13, 2539. [Google Scholar] [CrossRef]
- Demyan, L.; Habowski, A.N.; Plenker, D.; King, D.A.; Standring, O.J.; Tsang, C.B.; Surin, L.S.; Rishi, A.; Crawford, J.M.; Boyd, J.; et al. Pancreatic Cancer Patient-derived Organoids Can Predict Response to Neoadjuvant Chemotherapy. Ann. Surg. 2022, 276, 450–462. [Google Scholar] [CrossRef]
- Hennig, A.; Wolf, L.; Jahnke, B.; Polster, H.; Seidlitz, T.; Werner, K.; Aust, D.E.; Hampe, J.; Distler, M.; Weitz, J.; et al. CFTR Expression Analysis for Subtyping of Human Pancreatic Cancer Organoids. Stem Cells Int. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Hogenson, T.L.; Xie, H.; Phillips, W.J.; Toruner, M.D.; Li, J.J.; Horn, I.P.; Kennedy, D.J.; Almada, L.L.; Marks, D.L.; Carr, R.M.; et al. Culture media composition influences patient-derived organoid ability to predict therapeutic responses in gastrointestinal cancers. J. Clin. Investig. 2022, 7, e158060. [Google Scholar] [CrossRef]
- Ikezawa, K.; Ekawa, T.; Hasegawa, S.; Kai, Y.; Takada, R.; Yamai, T.; Fukutake, N.; Ogawa, H.; Akazawa, T.; Mizote, Y.; et al. Establishment of organoids using residual samples from saline flushes during endoscopic ultrasound-guided fine-needle aspiration in patients with pancreatic cancer. Endosc. Int. Open 2022, 10, E82–E87. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.; Ku, J.-L.; Chun, J.W.; Seo, H.Y.; Kim, S.C.; Paik, W.H.; Ryu, J.K.; Lee, S.K.; Lowy, A.M.; et al. Establishment of Patient-Derived Pancreatic Cancer Organoids from Endoscopic Ultrasound-Guided Fine-Needle Aspiration Biopsies. Gut Liver 2021, 16, 625–636. [Google Scholar] [CrossRef]
- Tiriac, H.; Belleau, P.; Engle, D.D.; Plenker, D.; Deschenes, A.; Somerville, T.D.D.; Froeling, F.E.M.; Burkhart, R.A.; Denroche, R.E.; Jang, G.H.; et al. Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov. 2018, 8, 1112–1129. [Google Scholar] [CrossRef]
- Wiessner, J.R.; Orben, F.; Schäfer, A.; Fricke, L.; Schneider, G.; Reichert, M.; Herner, A.; Mayr, U.; Phillip, V.; Treiber, M.; et al. Comparison of endoscopic ultrasound-guided fine-needle aspiration and fine-needle biopsy to generate pancreatic cancer organoids: Randomized trial. Endosc. Int. Open 2024, 12, E361–E366. [Google Scholar] [CrossRef]
- Kim, H.; Jang, J.; Choi, J.H.; Song, J.H.; Lee, S.H.; Park, J.; Ryoo, S.K.; Lee, E.M.; Jeong, H.-O.; Kim, S.; et al. Establishment of a patient-specific avatar organoid model derived from EUS-guided fine-needle biopsy for timely clinical application in pancreatic ductal adenocarcinoma (with video). Gastrointest. Endosc. 2024, 100, 85–96.e9. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, S.; Zhu, Y.; Xu, G.; Zhang, S.; Peng, C.; Yang, J.; Wang, L.; Zou, X.; Lyu, Y. Establishment of pancreatic cancer organoids with endoscopic ultrasonography-guided fine-needle aspiration specimen: A prospective pilot study. Chin. J. Dig. Endosc. 2019, 12, 649–653. [Google Scholar] [CrossRef]
- Matsumoto, K.; Fujimori, N.; Ichihara, K.; Takeno, A.; Murakami, M.; Ohno, A.; Kakehashi, S.; Teramatsu, K.; Ueda, K.; Nakata, K.; et al. Patient-derived organoids of pancreatic ductal adenocarcinoma for subtype determination and clinical outcome prediction. J. Gastroenterol. 2024, 59, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Imaoka, H.; Sasaki, M.; Hashimoto, Y.; Watanabe, K.; Miyazawa, S.; Shibuki, T.; Mitsunaga, S.; Ikeda, M. Impact of Endoscopic Ultrasound-Guided Tissue Acquisition on Decision-Making in Precision Medicine for Pancreatic Cancer: Beyond Diagnosis. Diagnostics 2021, 11, 1195. [Google Scholar] [CrossRef]
- Ashida, R.; Kitano, M. Endoscopic ultrasound-guided tissue acquisition for pancreatic ductal adenocarcinoma in the era of precision medicine. Dig. Endosc. 2022, 34, 1329–1339. [Google Scholar] [CrossRef]
- Hisada, Y.; Hijioka, S.; Ikeda, G.; Maehara, K.; Hashimoto, T.; Kitamura, H.; Harai, S.; Yoshinari, M.; Kawasaki, Y.; Murashima, Y.; et al. Proportion of unresectable pancreatic cancer specimens obtained by endoscopic ultrasound-guided tissue acquisition meeting the OncoGuide™ NCC Oncopanel System analysis suitability criteria: A single-arm, phase II clinical trial. J. Gastroenterol. 2022, 57, 990–998. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Ding, Q.-Y.; Lv, Y.; Guo, W.; Zhi, F.-C.; Liu, S.-D.; Cheng, T.-M. Slow-pull and different conventional suction techniques in endoscopic ultrasound-guided fine-needle aspiration of pancreatic solid lesions using 22-gauge needles. World J. Gastroenterol. 2016, 22, 8790. [Google Scholar] [CrossRef]
- Seino, T.; Kawasaki, S.; Shimokawa, M.; Tamagawa, H.; Toshimitsu, K.; Fujii, M.; Ohta, Y.; Matano, M.; Nanki, K.; Kawasaki, K.; et al. Human Pancreatic Tumor Organoids Reveal Loss of Stem Cell Niche Factor Dependence during Disease Progression. Cell Stem Cell 2018, 22, 454–467.e6. [Google Scholar] [CrossRef]
- Semaan, A.; Bernard, V.; Lee, J.J.; Wong, J.W.; Huang, J.; Swartzlander, D.B.; Stephens, B.M.; Monberg, M.E.; Weston, B.R.; Bhutani, M.S.; et al. Defining the Comprehensive Genomic Landscapes of Pancreatic Ductal Adenocarcinoma Using Real-World Endoscopic Aspiration Samples. Clin. Cancer Res. 2020, 27, 1082–1093. [Google Scholar] [CrossRef]
- Krieger, T.G.; Le Blanc, S.; Jabs, J.; Ten, F.W.; Ishaque, N.; Jechow, K.; Debnath, O.; Leonhardt, C.-S.; Giri, A.; Eils, R.; et al. Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy. Nat. Commun. 2021, 12, 5826. [Google Scholar] [CrossRef]
- LeSavage, B.L.; Suhar, R.A.; Broguiere, N.; Lutolf, M.P.; Heilshorn, S.C. Next-generation cancer organoids. Nat. Mater. 2021, 21, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Bockorny, B.; Paul, I.; Akshinthala, D.; Frappart, P.-O.; Gandarilla, O.; Bose, A.; Sanchez-Gonzalez, V.; Rouse, E.E.; Lehoux, S.D.; et al. PDX-derived organoids model in vivo drug response and secrete biomarkers. J. Clin. Investig. 2020, 5, e135544. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, E.; van Hoeck, A.; Moore, K.; Kolders, S.; Francies, H.E.; Gulersonmez, M.C.; Stigter, E.C.A.; Burgering, B.; Geurts, V.; Gracanin, A.; et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc. Natl. Acad. Sci. USA 2019, 116, 26580–26590. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.J.; Knutsdottir, H.; Shojaeian, F.; Lerner, M.G.; Wissler, M.F.; Henriet, E.; Ng, T.; Datta, S.; Navarro-Serer, B.; Chianchiano, P.; et al. Morphology-guided transcriptomic analysis of human pancreatic cancer organoids reveals microenvironmental signals that enhance invasion. J. Clin. Investig. 2023, 133, e162054. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, T.; Feng, L.; de Silva, N.; Greenspun, B.; Wang, X.; Moyer, J.; Martin, M.L.; Chandwani, R.; Elemento, O.; et al. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS. Cell Stem Cell 2023, 31, 71–88.e8. [Google Scholar] [CrossRef]
- Takeuchi, K.; Tabe, S.; Takahashi, K.; Aoshima, K.; Matsuo, M.; Ueno, Y.; Furukawa, Y.; Yamaguchi, K.; Ohtsuka, M.; Morinaga, S.; et al. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts. Cell Rep. 2023, 42, 113420. [Google Scholar] [CrossRef]
- Sandhya, S.; Hogenson, T.L.; E Fernandez-Zapico, M. Patient-derived organoids, creating a new window of opportunities for pancreatic cancer patients. EMBO Mol. Med. 2022, 14, e15707. [Google Scholar] [CrossRef]
- Schuth, S.; Le Blanc, S.; Krieger, T.G.; Jabs, J.; Schenk, M.; Giese, N.A.; Büchler, M.W.; Eils, R.; Conrad, C.; Strobel, O. Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system. J. Exp. Clin. Cancer Res. 2022, 41, 1–14. [Google Scholar] [CrossRef]
- Farshadi, E.A.; Chang, J.; Sampadi, B.; Doukas, M.; Land, F.V.; van der Sijde, F.; Vietsch, E.E.; Pothof, J.; Koerkamp, B.G.; van Eijck, C.H. Organoids Derived from Neoadjuvant FOLFIRINOX Patients Recapitulate Therapy Resistance in Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2021, 27, 6602–6612. [Google Scholar] [CrossRef]
- Hirt, C.K.; Booij, T.H.; Grob, L.; Simmler, P.; Toussaint, N.C.; Keller, D.; Taube, D.; Ludwig, V.; Goryachkin, A.; Pauli, C.; et al. Drug screening and genome editing in human pancreatic cancer organoids identifies drug-gene interactions and candidates for off-label therapy. Cell Genom. 2022, 2, 100095. [Google Scholar] [CrossRef]
- Georgakopoulos, N.; Prior, N.; Angres, B.; Mastrogiovanni, G.; Cagan, A.; Harrison, D.; Hindley, C.J.; Arnes-Benito, R.; Liau, S.-S.; Curd, A.; et al. Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC Dev. Biol. 2020, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- Hohwieler, M.; Illing, A.; Hermann, P.C.; Mayer, T.; Stockmann, M.; Perkhofer, L.; Eiseler, T.; Antony, J.S.; Müller, M.; Renz, S.; et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut 2016, 66, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Lai, B.F.L.; Lu, R.X.Z.; Hu, Y.; Huyer, L.D.; Dou, W.; Wang, E.Y.; Radulovich, N.; Tsao, M.S.; Sun, Y.; Radisic, M. Recapitulating Pancreatic Tumor Microenvironment through Synergistic Use of Patient Organoids and Organ-on-a-Chip Vasculature. Adv. Funct. Mater. 2020, 30, 48. [Google Scholar] [CrossRef] [PubMed]
- Grebenyuk, S.; Ranga, A. Engineering Organoid Vascularization. Front. Bioeng. Biotechnol. 2019, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Ponz-Sarvise, M.; Corbo, V.; Tiriac, H.; Engle, D.D.; Frese, K.K.; Oni, T.E.; Hwang, C.-I.; Öhlund, D.; Chio, I.I.C.; Baker, L.A.; et al. Identification of Resistance Pathways Specific to Malignancy Using Organoid Models of Pancreatic Cancer. Clin. Cancer Res. 2019, 25, 6742–6755. [Google Scholar] [CrossRef]
- Neal, J.T.; Li, X.; Zhu, J.; Giangarra, V.; Grzeskowiak, C.L.; Ju, J.; Liu, I.H.; Chiou, S.-H.; Salahudeen, A.A.; Smith, A.R.; et al. Organoid Modeling of the Tumor Immune Microenvironment. Cell 2018, 175, 1972–1988.e16. [Google Scholar] [CrossRef]
- Cattaneo, C.M.; Dijkstra, K.K.; Fanchi, L.F.; Kelderman, S.; Kaing, S.; van Rooij, N.; van den Brink, S.; Schumacher, T.N.; Voest, E.E. Tumor organoid–T-cell coculture systems. Nat. Protoc. 2020, 15, 15–39. [Google Scholar] [CrossRef]
- Zhang, J.; Tavakoli, H.; Ma, L.; Li, X.; Han, L.; Li, X. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv. Drug Deliv. Rev. 2022, 187, 114365. [Google Scholar] [CrossRef]
- Lahusen, A.; Cai, J.; Schirmbeck, R.; Wellstein, A.; Kleger, A.; Seufferlein, T.; Eiseler, T.; Lin, Y.N. A pancreatic cancer organoid-in-matrix platform shows distinct sensitivities to T cell killing. Sci. Rep. 2024, 14, 9377. [Google Scholar] [CrossRef]
Source of Organoids | Surgical Resection | EUS-FNA/FNB | |
---|---|---|---|
Morphological differences | Size and shape | Larger in size, more regular in shape, closer to the structure of the primary tissue | Smaller in size, varied in shape due to tissue fragmentation during the puncture process |
Cell layers and structure | More complete cell layers and structure, favorable for maintaining the original tissue architecture | Relatively simpler in cell layers and structure, but still retain certain features of pancreatic cancer tissue | |
Genetic stability differences | Gene expression and mutations | Better retention of the gene expression patterns and mutation characteristics of the primary tissue, higher genetic stability | Possible changes in gene expression patterns and mutation characteristics due to mechanical stress or chemical factors during the procedure |
Genetic variation and evolution | Slower genetic variation and evolution speed | May undergo more passages and expansions, leading to higher genetic variation and evolution speed | |
Drug response differences | Sensitivity and resistance | May have higher sensitivity or resistance to certain anticancer drugs | Different response to drugs, showing unique sensitivity or resistance characteristics |
Reaction dynamics | More stable reaction dynamics, better preservation of tissue structure and cell–cell interactions | More complex and variable reaction dynamics, possible disruption or alteration of cell–cell interactions and tissue structure |
Component Name | Pan1creaCult™ OIM + PGE2 + Y-27632 | PancreaCult™ OGM + PGE2 |
---|---|---|
PancreaCult™ organoid basal medium (human) | 84.65% | 94.75% |
PancreaCult™ organoid growth supplement (human) | 5% | 5% |
Organoid supplement | 10% | —— |
EGF (100 µg/mL) | 0.05% | 0.05% |
Gentamicin (optional) (50 mg/mL) | 1% | 0.1% |
PGE2 (1 mM) (immediately before use) | 1% | 0.1% |
Y-27632 (10 mM) (immediately before use) | 1% | —— |
Number | Needle Type | Number of Needle Passes | Location | Number of Examples | SR [%] | Pathological Grade | Digestion Solution | Medium | Organoid Culture Time |
---|---|---|---|---|---|---|---|---|---|
Tiriac [20] | 22G FNB | 1–2 times | Head: 23; body/tail: 15 | 38 | 66% | Unspecified | 5 mg/mL collagenase ×I, 10 μg/mL DNAse I, 10.5 μM Y-27632 in human complete feeding medium | Advanced DMEM/F12, HEPES 10 mM, GlutaMax 1×, A83-01 500 nM, hEGF 50 ng/mL, m-Noggin 100 ng/mL, hFGF10 100 ng/mL, hGastrin I 0.01 μM, N-acetylcysteine 1.25 mM, Nicotinamide 10 mM, PGE2 1 μM, B27 supplement 1× final, R-spondin1-conditioned media 10% final, and afamin–Wnt3A-conditioned media 50% final | ≥5 passages of growth (P5) |
Ishida [21] | 22G/25G FNB | Unspecified | Unspecified | 38 | 63.2% | Unspecified | Indigestion | DMEM/Hams F12/MCDB105 (2:1:1 ratio), 12% FBS (Gibco, USA), and B27-supplement (Gibco) | Not reported |
Armstrong [22] | Unspecified | Unspecified | Unspecified | 18 | 83% | Unspecified | 1:3 ratio of Advanced DMEM/F12 and TrypLE Express, supplemented with collagenase ×I 0.012% (w/v), 0.012% dispase (w/v), 10.5 µM Y-27632, and 10 mg/mL DNAse I | Advanced DMEM/F12, 1 M HEPES, 1× B27-supplement, 1× N2-supplement, 1 mM N-Acetylcysteine, 10 mM nicotinamide, hGastrin 0.1 µmol/L, hEGF 50 ng/mL, 500 nM A83-01, Y-27632, 100 ng/mL hFGF-10, and Wnt3A–R-spondin1–Noggin-conditioned media (50% of final volume) | Not reported |
Beutel [23] | 19G FNB | Unspecified | Unspecified | 2 | 100% | Resectable: 1; metastasized: 1 | Accutase | Organoid culture medium containing WNT3A/RSPOI-conditioned medium | Not reported |
Demyan [24] | 14G FNA | 1 time | Unspecified | 14 | 53% | Unspecified | 1 mg/mL collagenase ×I, 10 μg/mL DNAse I, 10.5 μM Y-27632 in human complete medium | Human complete feeding medium: advanced DMEM/F12, HEPES 10 mM, GlutaMax 1×, Primocin 1×, A83–01 500 nM, hEGF 50 ng/mL, m-Noggin 100 ng/mL, hFGF10 100 ng/mL, hGastrin I 0.01 μM, N- acetylcysteine 1.25 mM, nicotinamide 10 mM, B27 supplement 1× final, R-spondin1-conditioned media 10% final, and afamin–Wnt3A-conditioned media 50% final | Not reported |
Demyan [24] | 29G FNB | 1 time | Unspecified | 29 | 56% | Unspecified | 1 mg/mL collagenase ×I, 10 μg/mL DNAse I, 10.5 μM Y-27632 in human complete medium | Human Complete Feeding Medium: advanced DMEM/F12, HEPES 10 mM, GlutaMax 1×, Primocin 1×, A83–01 500 nM, hEGF 50 ng/mL, m-Noggin 100 ng/mL, hFGF10 100 ng/mL, hGastrin I 0.01 μM, N-acetylcysteine 1.25 mM, Nicotinamide 10 mM, B27 supplement 1× final, R-spondin1-conditioned media 10% final, afamin–Wnt3A-conditioned media 50% final | Not reported |
Grossman [19] | 22G FNB | Unspecified | Unspecified | 28 | 11% | Unspecified | Digested with STEMxyme-1 (250 CLS units per mL) for 30 to 40 min. Pellets were further digested with Accutase for 30 min. | Growth medium containing Y-27632, 5% Matrigel, and growth factors, such as insulin and FGF2. | ≥2 passages of growth (P2) |
Hennig [25] | FNA | Unspecified | Unspecified | 6 | 83% | Unspecified | Digested with dispase II (2.5 mg/mL, Roche, Basel, Switzerland) and collagenase II (0.625 mg/mL, Sigma-Aldrich, Germany) in DMEM/F12+++ medium (DMEM/F12 (Invitrogen, USA) supplemented with 1× HEPES (Invitrogen), 1× Pen/Strep (Invitrogen), and 1×GlutaMax (Invitrogen)) | Cultivated in human PDAC organoid medium DMEM/F12+++ supplemented with Wnt3a-conditioned medium (50% v/v), noggin-conditioned medium (10% v/v), RSPO1-conditioned medium (10% v/v), B27 (1×, Invitrogen), nicotinamide (10 mM, Sigma-Aldrich), gastrin (1 nM, Sigma-Aldrich), N-acetyl-L-cysteine (1 mM, Sigma-Aldrich), Primocin (1 mg/mL, InvivoGen), recombinant murine epidermal growth factor (mEGF, 50 ng/mL, Invitrogen), recombinant human fibroblast growth factor 10 (hFGF10, 100 ng/mL, PeproTech, USA), A-83-01 (0.5 μM, Tocris Bioscience, UK), and N2 (1×, Invitrogen). | ≥10 passages of growth (P10) |
Hogenson [26] | FNA | Unspecified | Unspecified | 16 | 13% | Unspecified | Digested using a human Tumor Dissociation Kit (Miltenyi Biotec, Germany, 130-095-929) in a gentleMACS Octo Dissociator with Heaters (Miltenyi Biotec), filtered through a MACS SmartStrainer (100 μm) filter (Miltenyi Biotec, 130-098-463) | PaTOM medium contains DMEM plus GlutaMax (Gibco, 10564-011), 0.1% penicillin–streptomycin–amphotericin B solution, 0.25 μg/mL hydrocortisone (Sigma-Aldrich, H0888), 1% B27 (Gibco, 12587-010), 50 μg/mL L-ascorbic acid (Sigma-Aldrich, A92902), 20 μg/mL insulin (Sigma-Aldrich, I9278), 100 ng/mL FGF2 (R&D Systems, USA, 233-FB), and 100 nM all-trans retinoic acid (Sigma-Aldrich, R2625). PDO culture medium consists of PaTOM media plus 10 μM Y-267632 (ROCK inhibitor) (Selleckchem, USA, S1049) and 5% Matrigel. WNT medium contains 50% L-WRN-conditioned media (Wnt3a, R-spondin, and Noggin) (53), 50% Advanced DMEM/F12 (Gibco, 12634-010), 1× HEPES (Gibco, 15630-080), 1× GlutaMax (Gibco, A12860-01), 1× N2 Supplement (Gibco, 17502048), 1× B27 Supplement (Gibco, 12587-010), 50 ng/mL EGF (R&D Systems, 236EG200), 3 μM SB202190 (Selleckchem, USA, S1077), 500 nM A-83-01 (Selleckchem, S7692), 1 mM N-acetylcysteine (Sigma-Aldrich, A9165), 10 mM nicotinamide (Sigma-Aldrich, N3376), 10 nM gastrin I (Sigma-Aldrich, G9020), 100 ng/mL FGF10 (Peprotech, USA, 100-26), 100 μg/mL Primocin (Invivogen, ANT-PM-1), and 1% penicillin–streptomycin–amphotericin B solution. | ≥3 passages of growth (P3) |
Ikezawa [27] | 22G/25G FNA | 2–4times | Head: 3; body/tail: 2 | 5 | 80% | I: 1; III: 3; IV: 1 | 2.5 mg/mL Liberase TH (MERCK, Germany; 5401135001) and 10 μg/mL DNase I (MERCK; DN25) | Advanced DMEM/F12 supplemented with 1× GlutaMax (Thermo Fisher Scientific, USA; 35050061), 10 mM HEPES (Thermo Fisher Scientific; 15630080), 100 U/mL penicillin–streptomycin (Thermo Fisher Scientific; 15140122), 50 μg/mL Primocin (InviivoGen; 14860–94), 1× B27 supplement (Thermo Fisher Scientific; 17504044), 50 ng/mL epidermal growth factor (EGF; Thermo Fisher Scientific; PMG8044), 50 ng/mL fibroblast growth factor-2 (FGF2; PeproTech, USA; 100–18B), 100 ng/mL insulin-like growth factor 1 (IGF1; BioLegend; 590904), 1.25 mM N-acetylcysteine (MERCK; A9165), 10 nM gastrin (MERCK; G9145), 1 μg/mL R-spondin (PeproTech; 120–38), 5 μM A83–01 (TGF-β inhibitor) (Tocris Bioscience, U.K; 2939), 10 μM Y-27632 (FUJIFILM, Japan; 259–00613), 10 % afamin–Wnt3a CM (MBL, Japan; J-ORMW301 R), and 100 ng/mL Noggin (BMP inhibitor) (PeproTech; 250–38). | ≥5 passages of growth (P5) |
Lee [28] | 19G/22G FNA | 2–3times | Head: 5; body: 2; tail: 5 | 20 | 60% | Unspecified | Indigestion | Organoid culture medium: complete medium: 50% (v/v) with Wnt-3A, R-spondin1, and m-Noggin-conditioned medium, human epidermal growth factor 50 ng/mL, human fibroblast growth factor-10 100 ng/mL, nicotinamide 10 mM, 500 nM A83-01, 1× B27 supplement, N-acetylcysteine 1.25 mM, 10% fetal bovine serum (FBS), and human gastrin I 0.01 μM in 50% basal culture medium. Conditioned medium: recombinant Wnt-3A, Noggin, or R-spondin1 can be substituted with conditioned medium from L-WRN (ATCCⓇCRL-3276TM) cell line. Conditioned media: L-WRN (ATCCⓇCRL-3276TM) cell line was cultured in DMEM supplemented with 10% FBS and 1% penicillin and streptomycin; when the cell was 70% confluent, all the media were suctioned and replaced with advanced DMEM (10% FBS, 1% penicillin and streptomycin). After washing with the media, new advanced DMEM (10% FBS, 1% penicillin and streptomycin) was added, and cultured for 2 to 3 days to obtain conditioned media. | ≥5 passages of growth (P5) |
Seppälä [17] | Unspecified | Unspecified | Unspecified | 45 | 78% | Unspecified | 1 mg/mL collagenase ×I, 10 μg/mL DNAse I, 10.5 μM Y-27632 in human complete medium | Advanced DMEM/F12, HEPES 10 mM, GlutaMax 1×, A83-01 500 nM, hEGF 50 ng/mL, m-Noggin 100 ng/mL, hFGF10 100 ng/mL, hGastrin I 0.01 μM, N-acetylcysteine 1.25 mM, nicotinamide 10 mM, PGE2 1 μM, B27 supplement 1× final, R-spondin1-conditioned media 10% final, and afamin–Wnt3A-conditioned media 50% final. | 18–102 days |
Tiriac [29] | FNB | Unspecified | Unspecified | 60 | 72% | Unspecified | 1 mg/mL collagenase ×I, 10 μg/mL DNAse I, 10.5 μM Y-27632 in human complete medium | Advanced DMEM/F12, HEPES 10 mM, GlutaMax 1×, A83-01 500 nM, hEGF 50 ng/mL, m-Noggin 100 ng/mL, hFGF10 100 ng/mL, hGastrin I 0.01 μM, N-acetylcysteine 1.25 mM, Nicotinamide 10 mM, PGE2 1 μM, B27 supplement 1× final, R-spondin1 conditioned media 10% final, and afamin–Wnt3A-conditioned media 50% final. | Not reported |
Boj [9] | FNA | Unspecified | Unspecified | 2 | 100% | Unspecified | Collagenase II (5 mg/mL, Gibco) in human complete medium. The material was further digested with TrypLE (Gibco) | Advanced DMEM/F12 supplemented with (1) GlutaMax 1×, (2) Hepes 1×, (3) Noggin 10% v/v or recombinant protein 0.1 μg/mL, (4) Gastrin 10 nM, (5) nicotinamide 10 mM, (6) R-spondin-1 10% v/v, (7) EGF 50 ng/mL, (8) FGF-10 100 ng/mL, (9) N-acetyl-L-cysteine 1 mM, (10) B27 supplement, (11) Wnt3a 50% v/v, (12) Primocin 1 mg/mL, (13) penicillin–streptomycin 1×, (14) A83-01 0.5 μΜ. | Not reported |
Wiessner [30] | 22G FNA/FNB | Unspecified | Head: 15; body: 30; tail: 5 | 50 | 34% | Unspecified | TrypLE | DMEM-F12 (#11320033 Thermo Fisher), 5 mg/mL D-glucose (#G8270 Sigma-Aldrich), 0.5% ITS Premix (#354350 Fisher Scientific), 5 nM 3,3,5-Triiodo-L-thyronine (#T0821 Sigma-Aldrich), 1 µM dexamethasone (#D175 Sigma-Aldrich), 100 ng/mL cholera toxin (#C9903 Sigma-Aldrich), 1% penicillin–streptomycin (#15140122 Thermo Fisher Scientific), 5% NU-Serum IV (#355500 Fisher Scientific), 25 µg/mL bovine pituitary extract (#P1167 Sigma-Aldrich), 10 mM nicotinamide (#N3376 Sigma-Aldrich), 100 µg/mL Primocin (#ant-pm05 Invivogen), 0.5 µm A83–01 (#2939 Tocris, U.K), 10% RSPO1-conditioned medium (R-spondin-1 overexpressing cell line HEK293T, provided by the Hubrecht Institute (Uppsalalaan 8, 3584 CT Utrecht, Netherlands, Netherlands), 100 ng/mL recombinant human geregulin-1 (#100–03 Peprotech), and 10 µM Rho kinase inhibitor (#TB1254-GMP Tocris). | ≥5 passages of growth (P5) |
Kim [31] | 22G FNB | Unspecified | Head: 51; body: 31; tail: 25 | 113 | 83.2% | I: 14; II: 7; III: 33; IV: 59 | Tumors were homogenized with a GentleMACS tissue dissociator and human tumor dissociation kit (Miltenyi Biotec). | Advanced DMEM/F12 supplemented with GlutaMax, B27 supplement, N2 supplement, Wnt-3a, Human R-spondin 1, human gastrin, human Noggin, human epidermal growth factor, human fibroblast growth factor 10, A83-01, Primocin, Y-27632, antibiotic antimycotics, HEPES, N-Acetylcysteine, and nicotinamide. | ≥3 passages of growth (P3) |
Yang [32] | 22G FNA | 2 times | Head: 6; body: 2; tail: 1 | 9 | 55.5% | Unspecified | Used the Advanced DMEM/F-12 medium from the American Thermo Fisher Company as the basic medium, with added collagenase ×I and dispase to prepare the digestion solution | Advanced DMEM/F-12 medium is used as the basic medium, and Wnt3A, R-Spondin, Noggin, FGF10, and other growth factors are added to form an organoid growth medium. | ≥3 passages of growth (P3) |
Matsumoto [33] | 19G/22G FNB | Unspecified | Unspecified | 27 | 74% | Unspecified | Liberase TH (20 min) and TrypLE Express | Advanced DMEM/F12, HEPES, penicillin–streptomycin mixed solution, GlutaMax TM (100×), afamin–Wnt3A CM, R-spondin-1 CM, EGF, Noggin, IGF-1, FGF-2, A83-01, Y-27632, B-27 supplement, N-acetyl-L-cysteine, and Gastrin I. | Not reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.-J.; Gao, C.; Huang, X.; Wang, M.; Zhang, S.; Gao, X.-P.; Zhong, C.-Q.; Li, L.-Y. Establishing Pancreatic Cancer Organoids from EUS-Guided Fine-Needle Biopsy Specimens. Cancers 2025, 17, 692. https://doi.org/10.3390/cancers17040692
Wang M-J, Gao C, Huang X, Wang M, Zhang S, Gao X-P, Zhong C-Q, Li L-Y. Establishing Pancreatic Cancer Organoids from EUS-Guided Fine-Needle Biopsy Specimens. Cancers. 2025; 17(4):692. https://doi.org/10.3390/cancers17040692
Chicago/Turabian StyleWang, Mei-Juan, Chao Gao, Xin Huang, Min Wang, Shuai Zhang, Xiao-Pei Gao, Chang-Qing Zhong, and Lian-Yong Li. 2025. "Establishing Pancreatic Cancer Organoids from EUS-Guided Fine-Needle Biopsy Specimens" Cancers 17, no. 4: 692. https://doi.org/10.3390/cancers17040692
APA StyleWang, M.-J., Gao, C., Huang, X., Wang, M., Zhang, S., Gao, X.-P., Zhong, C.-Q., & Li, L.-Y. (2025). Establishing Pancreatic Cancer Organoids from EUS-Guided Fine-Needle Biopsy Specimens. Cancers, 17(4), 692. https://doi.org/10.3390/cancers17040692