Real-World Outcomes and Biomarker Analysis Based on Routine Clinical, Laboratory, and Pathologic Parameters in Metastatic or Unresectable Esophageal Cancer Treated with First-Line Anti-PD-1 Plus Fluoropyrimidine and Platinum
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Treatment Regimen and Evaluation of Tumor Response and Adverse Events
2.3. Clinical Data Collection and Management
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Treatment Administered
3.3. Safety and Tolerance
3.4. Efficacy Outcomes
3.5. Analysis of Clinicolaboratory Factors for PFS and OS
3.6. Development of a Prognostic Scoring Model and Risk Stratification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-FU | 5-fluorouracil |
AE | Adverse event |
CI | Confidence interval |
CPS | Combined positive score |
CR | Complete response |
CRP | C-reactive protein |
CTCAE | National Cancer Institute Common Terminology Criteria for Adverse Events |
DCR | Disease control rate |
dMMR | Mismatch repair-deficient |
DoR | Duration of response |
ECOG | Eastern Cooperative Oncology Group |
ESCC | Esophageal squamous cell carcinoma |
FP | 5-fluorouracil and cisplatin |
FFPE | Formalin-fixed paraffin-embedded |
HR | Hazard ratio |
ICI | Immune checkpoint inhibitor |
IHC | Immunohistochemistry |
irAE | Immune-related adverse event |
IRB | Institutional review board |
IV | Intravenously |
MFDS | Ministry of Food and Drug Safety |
MSI | Microsatellite instability |
NGS | Next-generation sequencing |
NLR | Neutrophil-to-lymphocyte ratio |
ORR | Objective response rate |
OS | Overall survival |
PCR | Polymerase chain reaction |
PD-1 | Programmed death-1 |
PD-L1 | Programmed death-ligand 1 |
PD | Progressive disease |
PFS | Progression-free survival |
PLR | Platelet-to-lymphocyte ratio |
PR | Partial response |
RECIST 1.1 | Response Evaluation Criteria in Solid Tumors version 1.1 |
SCC | Squamous cell carcinoma |
SD | Stable disease |
TMB | Tumor mutation burden |
TPS | Tumor proportion score |
TRAE | Treatment-related adverse event |
UNL | Upper normal limit |
XP | Capecitabine and cisplatin |
References
- Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates from GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658.e642. [Google Scholar] [CrossRef]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Farjah, F.; Gerdes, H.; et al. Esophageal and Esophagogastric Junction Cancers, Version 2.2023, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc Netw. 2023, 21, 393–422. [Google Scholar] [CrossRef]
- Siewert, J.R.; Ott, K. Are squamous and adenocarcinomas of the esophagus the same disease? Semin. Radiat. Oncol. 2007, 17, 38–44. [Google Scholar] [CrossRef]
- Bleiberg, H.; Conroy, T.; Paillot, B.; Lacave, A.J.; Blijham, G.; Jacob, J.H.; Bedenne, L.; Namer, M.; De Besi, P.; Gay, F.; et al. Randomised phase II study of cisplatin and 5-fluorouracil (5-FU) versus cisplatin alone in advanced squamous cell oesophageal cancer. Eur. J. Cancer 1997, 33, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kim, S.; Kim, M.; Lee, J.; Park, Y.H.; Im, Y.H.; Park, S.H. Capecitabine in combination with either cisplatin or weekly paclitaxel as a first-line treatment for metastatic esophageal squamous cell carcinoma: A randomized phase II study. BMC Cancer 2015, 15, 693. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.P.; Li, Z.; Kim, S.B.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.H.; Adenis, A.; et al. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef]
- Xu, J.; Kato, K.; Raymond, E.; Hubner, R.A.; Shu, Y.; Pan, Y.; Park, S.R.; Ping, L.; Jiang, Y.; Zhang, J.; et al. Tislelizumab plus chemotherapy versus placebo plus chemotherapy as first-line treatment for advanced or metastatic oesophageal squamous cell carcinoma (RATIONALE-306): A global, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2023, 24, 483–495. [Google Scholar] [CrossRef]
- Wang, Z.X.; Cui, C.; Yao, J.; Zhang, Y.; Li, M.; Feng, J.; Yang, S.; Fan, Y.; Shi, J.; Zhang, X.; et al. Toripalimab plus chemotherapy in treatment-naïve, advanced esophageal squamous cell carcinoma (JUPITER-06): A multi-center phase 3 trial. Cancer Cell 2022, 40, 277–288.e3. [Google Scholar] [CrossRef]
- Luo, H.; Lu, J.; Bai, Y.; Mao, T.; Wang, J.; Fan, Q.; Zhang, Y.; Zhao, K.; Chen, Z.; Gao, S.; et al. Effect of Camrelizumab vs. Placebo Added to Chemotherapy on Survival and Progression-Free Survival in Patients with Advanced or Metastatic Esophageal Squamous Cell Carcinoma: The ESCORT-1st Randomized Clinical Trial. JAMA 2021, 326, 916–925. [Google Scholar] [CrossRef]
- Galluzzi, L.; Humeau, J.; Buqué, A.; Zitvogel, L.; Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2020, 17, 725–741. [Google Scholar] [CrossRef]
- Singh, H.; Kanapuru, B.; Smith, C.; Fashoyin-Aje, L.A.; Myers, A.; Kim, G.; Pazdur, R. FDA analysis of enrollment of older adults in clinical trials for cancer drug registration: A 10-year experience by the U.S. Food and Drug Administration. J. Clin. Oncol. 2017, 35 (Suppl. S15). [Google Scholar] [CrossRef]
- Hennessy, M.A.; Hamid, M.; Keegan, N.M.; Corrigan, L.; Goggin, C.; Oo, N.M.; Carrigan, M.; Mockler, D.; O’Donovan, A.; Horgan, A.M. Metastatic gastroesophageal cancer in older patients—Is this patient cohort represented in clinical trials? BMC Cancer 2022, 22, 3. [Google Scholar] [CrossRef] [PubMed]
- Sedrak, M.S.; Freedman, R.A.; Cohen, H.J.; Muss, H.B.; Jatoi, A.; Klepin, H.D.; Wildes, T.M.; Le-Rademacher, J.G.; Kimmick, G.G.; Tew, W.P.; et al. Older adult participation in cancer clinical trials: A systematic review of barriers and interventions. CA A Cancer J. Clin. 2021, 71, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Ono Pharmaceutical Co., Ltd. Opdivo® Intravenous Infusion Approved in South Korea for the First-line Treatment of Unresectable Advanced or Metastatic Esophageal Squamous Cell Carcinoma in Two Combination Treatments of Opdivo + Yervoy and Opdivo + Chemotherapy. Ono Pharmaceutical Co., Ltd., 2023. Available online: https://www.ono-pharma.com/en/news/20230323_3.html?utm (accessed on 4 August 2025).
- Kim, Y.-M. Keytruda’s Indication Broadened for Esophageal, GEJ Carcinoma. Korea Biomedical Review. 2022. Available online: https://www.koreabiomed.com/news/articleView.html?idxno=13274 (accessed on 4 August 2025).
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. National Cancer Institute, 2017. Available online: https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events/ctcae-v5-5x7.pdf (accessed on 4 August 2025).
- Haanen, J.; Obeid, M.; Spain, L.; Carbonnel, F.; Wang, Y.; Robert, C.; Lyon, A.R.; Wick, W.; Kostine, M.; Peters, S.; et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 1217–1238. [Google Scholar] [CrossRef]
- Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.O., 3rd; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; LeBoeuf, N.R.; et al. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef]
- Lee, S.H.; Jeong, H.; Kim, D.H.; Jang, S.J.; Kim, S.W.; Yoon, S.; Lee, D.H. Comparison of Clinicopathogenomic Features and Treatment Outcomes of EGFR and HER2 Exon 20 Insertion Mutations in Non-Small Cell Lung Cancer: Single-Institution Experience. Cancer Res. Treat. 2024, 56, 774–784. [Google Scholar] [CrossRef]
- Wei, B.; Kang, J.; Kibukawa, M.; Arreaza, G.; Maguire, M.; Chen, L.; Qiu, P.; Lang, L.; Aurora-Garg, D.; Cristescu, R.; et al. Evaluation of the TruSight Oncology 500 Assay for Routine Clinical Testing of Tumor Mutational Burden and Clinical Utility for Predicting Response to Pembrolizumab. J. Mol. Diagn. 2022, 24, 600–608. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Summary of Safety and Effectiveness Data: VENTANA MMR RxDx Panel; FDA: Tokyo, Japan, 2021. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf21/P210001b.pdf (accessed on 4 August 2025).
- Loukola, A.; Eklin, K.; Laiho, P.; Salovaara, R.; Kristo, P.; Järvinen, H.; Mecklin, J.P.; Launonen, V.; Aaltonen, L.A. Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res. 2001, 61, 4545–4549. [Google Scholar]
- Sinicrope, F.A.; Sargent, D.J. Clinical implications of microsatellite instability in sporadic colon cancers. Curr. Opin. Oncol. 2009, 21, 369–373. [Google Scholar] [CrossRef]
- Kim, J.H.; Ahn, B.; Hong, S.M.; Jung, H.Y.; Kim, D.H.; Choi, K.D.; Ahn, J.Y.; Lee, J.H.; Na, H.K.; Kim, J.H.; et al. Real-World Efficacy Data and Predictive Clinical Parameters for Treatment Outcomes in Advanced Esophageal Squamous Cell Carcinoma Treated with Immune Checkpoint Inhibitors. Cancer Res. Treat. 2022, 54, 505–516. [Google Scholar] [CrossRef]
- Chen, M.F.; Chen, P.T.; Kuan, F.C.; Chen, W.C. The Predictive Value of Pretreatment Neutrophil-to-Lymphocyte Ratio in Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2019, 26, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef] [PubMed]
- Hothorn, T.; Lausen, B. On the exact distribution of maximally selected rank statistics. Comput. Stat. Data Anal. 2003, 43, 121–137. [Google Scholar] [CrossRef]
- Gao, L.; Tang, L.; Peng, J.; Hu, Z.; Yang, J.; Liu, B. PD-1 inhibitor combined with chemotherapy for first-line treatment of esophageal squamous cell carcinoma patients with distant metastasis: A real-world retrospective study. Front. Immunol. 2024, 15, 1353445. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Ssuzuki, T.; Chinen, T.; Yamaguchi, H.; Suzuki, Y.; Hokamura, N.; Saze, Z.; Kono, K.; Takahashi, K.; Yano, F.; et al. The real-world data of immune-checkpoint inhibitor combination therapy for unresectable or metastatic esophageal cancer: A multi-institutional cohort study. Int. J. Clin. Oncol. 2024, 29, 994–1001. [Google Scholar] [CrossRef]
Characteristics | No. (%) (N = 87) |
---|---|
Age, median (range), years | 62 (42–87) |
<65 years | 55 (63.2%) |
≥65 years | 32 (36.8%) |
Sex | |
Male | 75 (86.2%) |
Female | 12 (13.8%) |
ECOG Performance status | |
0 | 20 (23.0%) |
1 | 53 (60.9%) |
≥2 | 14 (16.1%) |
Smoking Status | |
Never smoked | 17 (19.5%) |
Former smoker | 34 (39.1%) |
Current smoker | 36 (41.4%) |
Histological grade | |
Well differentiated | 7 (8.0%) |
Moderately differentiated | 55 (63.2%) |
Poorly differentiated | 15 (17.2%) |
Unknown | 10 (11.5%) |
PD-L1 status | |
CPS (22C3) < 10 | 19 (21.8%) |
CPS (22C3) ≥ 10 | 64 (73.6%) |
CPS (22C3) NA | 4 (4.6%) |
CPS (28-8) < 10 | 15 (17.2%) |
CPS (28-8) ≥ 10 | 19 (21.8%) |
CPS (28-8) NA | 53 (60.9%) |
TPS (22C3) < 1% | 18 (20.7%) |
TPS (22C3) ≥ 1% | 68 (78.2%) |
TPS (22C3) NA | 1 (1.1%) |
TPS (28-8) < 1% | 6 (6.9%) |
TPS (28-8) ≥ 1% | 44 (50.6%) |
TPS (28-8) NA | 37 (42.5%) |
Disease status | |
Metastatic | 71 (81.6%) |
Locally advanced, unresectable | 16 (18.4%) |
No. of distant metastatic organs | |
0 | 16 (18.4%) |
1 | 33 (37.9%) |
2 | 23 (26.4%) |
≥3 | 15 (17.2%) |
Site of distant metastasis | |
Distant lymph node | 51 (58.6%) |
Lung | 29 (33.3%) |
Liver | 23 (26.4%) |
Bone | 16 (18.4%) |
Peritoneum | 4 (4.6%) |
Other organs * | 5 (5.7%) |
Prior treatment for esophageal cancer ‡ | 25 (28.7%) |
Surgery | 21 (24.1%) |
Concurrent chemoradiotherapy | 15 (17.2%) |
Radiation therapy | 2 (2.3%) |
Chemotherapy | 13 (14.9%) |
Recent use of antibiotics † | 34 (40.2%) |
Tumor mutation burden, median (range), mutations/Mb | 17 (6–69) |
MSI status § | |
MSS/pMMR | 36 (41.4%) |
MSI-H/dMMR | 2 (2.3%) |
NA | 49 (56.3%) |
CTCAE Grades, No. (%) (N = 87) | |||||
---|---|---|---|---|---|
Any Grade | Grade 1 | Grade 2 | Grade 3 | Grade 4 | |
Any treatment-related adverse events | 82 (94.3) | 59 (67.8) | 68 (78.2) | 45 (51.7) | 3 (3.4) |
Treatment-related serious adverse events | 4 (4.6) | 0 (0.0) | 2 (2.3) | 3 (3.4) | 0 (0.0) |
Treatment-related adverse events (≥5% of patients) | |||||
Nausea | 33 (37.9) | 10 (11.5) | 16 (18.4) | 7 (8.0) | 0 (0.0) |
Anemia | 24 (27.6) | 0 (0.0) | 12 (13.8) | 11 (12.6) | 1 (1.1) |
Fatigue | 22 (25.3) | 11 (12.6) | 9 (10.3) | 2 (2.3) | 0 (0.0) |
Alopecia | 22 (25.3) | 15 (17.2) | 7 (8.0) | 0 (0.0) | 0 (0.0) |
Neutrophil count decreased | 21 (24.1) | 0 (0.0) | 6 (6.9) | 14 (16.1) | 1 (1.1) |
Peripheral neuropathy | 20 (23.0) | 12 (13.8) | 6 (6.9) | 2 (2.3) | 0 (0.0) |
Anorexia | 18 (20.7) | 3 (3.4) | 13 (14.9) | 2 (2.3) | 0 (0.0) |
Platelet count decreased | 13 (14.9) | 6 (6.9) | 5 (5.7) | 2 (2.3) | 0 (0.0) |
Mucositis oral | 12 (13.8) | 4 (4.6) | 6 (6.9) | 2 (2.3) | 0 (0.0) |
Diarrhea | 12 (13.8) | 6 (6.9) | 5 (5.7) | 1 (1.1) | 0 (0.0) |
Skin rash | 10 (11.5) | 6 (6.9) | 4 (4.6) | 0 (0.0) | 0 (0.0) |
Fever | 9 (10.3) | 7 (8.0) | 2 (2.3) | 0 (0.0) | 0 (0.0) |
Vomiting | 9 (10.3) | 2 (2.3) | 5 (5.7) | 2 (2.3) | 0 (0.0) |
Constipation | 8 (9.2) | 5 (5.7) | 3 (3.4) | 0 (0.0) | 0 (0.0) |
Aspartate aminotransferase increased | 7 (8.0) | 2 (2.3) | 3 (3.4) | 2 (2.3) | 0 (0.0) |
Acute kidney injury | 7 (8.0) | 2 (2.3) | 3 (3.4) | 2 (2.3) | 0 (0.0) |
Hand-foot syndrome | 6 (6.9) | 5 (5.7) | 1 (1.1) | 0 (0.0) | 0 (0.0) |
Alanine aminotransferase increased | 5 (5.7) | 1 (1.1) | 3 (3.4) | 1 (1.1) | 0 (0.0) |
Pruritus | 5 (5.7) | 3 (3.4) | 2 (2.3) | 0 (0.0) | 0 (0.0) |
Creatinine increased | 5 (5.7) | 3 (3.4) | 2 (2.3) | 0 (0.0) | 0 (0.0) |
Immune-related adverse events | |||||
Pruritus | 12 (13.8) | 3 (3.4) | 9 (10.3) | 0 (0.0) | 0 (0.0) |
Skin rash | 11 (12.6) | 4 (4.6) | 7 (8.0) | 0 (0.0) | 0 (0.0) |
Dry skin | 3 (3.4) | 2 (2.3) | 1 (1.1) | 0 (0.0) | 0 (0.0) |
Pneumonitis | 3 (3.4) | 0 (0.0) | 2 (2.3) | 1 (1.1) | 0 (0.0) |
Hypothyroidism | 2 (2.3) | 0 (0.0) | 2 (2.3) | 0 (0.0) | 0 (0.0) |
Colitis | 2 (2.3) | 1 (1.1) | 1 (1.1) | 0 (0.0) | 0 (0.0) |
Dry mouth | 2 (2.3) | 2 (2.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Serum amylase increased | 2 (2.3) | 2 (2.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Subclinical hypothyroidism | 2 (2.3) | 1 (1.1) | 1 (1.1) | 0 (0.0) | 0 (0.0) |
Arthralgia | 2 (2.3) | 1 (1.1) | 1 (1.1) | 0 (0.0) | 0 (0.0) |
Arthritis | 1 (1.1) | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Myalgia | 1 (1.1) | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Pericarditis | 1 (1.1) | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Immune-related cholangiopathy | 1 (1.1) | 0 (0.0) | 0 (0.0) | 1 (1.1) | 0 (0.0) |
Thyroiditis | 1 (1.1) | 0 (0.0) | 1 (1.1) | 0 (0.0) | 0 (0.0) |
Subclinical hyperthyroidism | 1 (1.1) | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Nail dystrophy | 1 (1.1) | 1 (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Variable | Univariable | Multivariable | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age (≥65 years vs. <65 years) | 0.61 (0.35–1.05) | 0.073 | ||
ICI (nivolumab vs. pembrolizumab) | 1.29 (0.77–2.19) | 0.336 | ||
Sex (female vs. male) | 0.86 (0.41–1.82) | 0.693 | ||
No. of metastatic organs (≥2 vs. ≤1) | 1.91 (1.14–3.21) | 0.014 * | ||
Liver metastasis (yes vs. no) | 1.98 (1.14–3.42) | 0.015 * | ||
Lung metastasis (yes vs. no) | 1.79 (1.06–3.02) | 0.028 * | ||
Peritoneum metastasis (yes vs. no) | 1.71 (0.62–4.74) | 0.301 | ||
Bone metastasis (yes vs. no) | 1.81 (0.96–3.42) | 0.066 | ||
Lymph node metastasis (yes vs. no) | 0.86 (0.52–1.42) | 0.550 | ||
Cigarette use (never vs. former/current smoker) | 0.84 (0.46–1.55) | 0.584 | ||
ECOG PS (≥2 vs. 0–1) | 5.20 (2.67–10.12) | <0.001 * | 4.55 (2–10.34) | <0.001 * |
Tumor mutation burden (≥20 Mb vs. <20 Mb) | 0.87 (0.38–1.98) | 0.737 | ||
Baseline Hb (≥12 g/dL vs. <12 g/dL) | 0.69 (0.42–1.14) | 0.151 | ||
Baseline ALC (≥1000/μL vs. <1000/μL) | 0.55 (0.28–1.09) | 0.086 | ||
Baseline ANC (≥4000/μL vs. <4000/μL) | 2.69 (1.45–4.97) | 0.002 * | ||
Baseline CRP (> UNL vs. ≤UNL) | 3.34 (1.87–5.97) | <0.001 * | 2.44 (1.2–4.96) | 0.013 * |
Baseline albumin (≥3.5 g/dL vs. <3.5 g/dL) | 0.61 (0.36–1.05) | 0.076 | ||
Baseline sodium (≥135 mmol/L vs. <135 mmol/L) | 0.38 (0.20–0.70) | 0.002 * | ||
Baseline NLR (≥3.37 vs. <3.37) | 2.94 (1.75–4.94) | <0.001 * | ||
Baseline PLR (≥146.4 vs. <146.4) | 2.75 (1.60–4.72) | <0.001 * | 1.79 (0.84–3.85) | 0.133 |
Recent use of antibiotics within the past 30 days (yes vs. no) | 1.72 (1.04–2.85) | 0.036 * | ||
Differentiation (well or moderately vs. poorly differentiated) | 1.37 (0.69–2.71) | 0.374 | ||
PD-L1 status | ||||
CPS 22C3 (≥10 to <50 vs. ≥50) | 3.44 (1.56–7.58) | 0.002 * | 2.46 (1.01–6.00) | 0.047 * |
CPS 22C3 (<10 vs. ≥50) | 3.79 (1.6–8.96) | 0.002 * | 4.14 (1.51–11.32) | 0.006 * |
Variable | Univariable | Multivariable | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age (≥65 years vs. <65 years) | 0.63 (0.33–1.20) | 0.160 | ||
ICI (nivolumab vs. pembrolizumab) | 1.23 (0.66–2.28) | 0.510 | ||
Sex (female vs. male) | 1.04 (0.46–2.34) | 0.925 | ||
No. of metastatic organs (≥2 vs. ≤1) | 1.98 (1.09–3.59) | 0.024 * | ||
Liver metastasis (yes vs. no) | 3.26 (1.76–6.06) | <0.001 * | ||
Lung metastasis (yes vs. no) | 1.36 (0.73–2.51) | 0.332 | ||
Peritoneum metastasis (yes vs. no) | 2.65 (0.94–7.46) | 0.064 | ||
Bone metastasis (yes vs. no) | 2.64 (1.32–5.25) | 0.006 * | ||
Lymph node metastasis (yes vs. no) | 0.85 (0.47–1.54) | 0.587 | ||
Cigarette use (never vs. former/current smoker) | 0.97 (0.48–1.96) | 0.927 | ||
ECOG PS (≥2 vs. 0–1) | 4.31 (2.11–8.78) | <0.001 * | 2.90 (1.23–6.85) | 0.015 * |
Tumer mutation burden (≥20 Mb vs. <20 Mb) | 1.06 (0.43–2.63) | 0.897 | ||
Baseline Hb (≥12 g/dL vs. <12 g/dL) | 0.6 (0.33–1.09) | 0.091 | ||
Baseline ALC (≥1000/μL vs. <1000/μL) | 0.71 (0.30–1.69) | 0.441 | ||
Baseline ANC (≥4000/μL vs. <4000/μL) | 2.43 (1.16–5.06) | 0.018 * | ||
Baseline CRP (>UNL vs. ≤UNL) | 3.15 (1.62–6.13) | 0.001 * | 2.22 (1.06–4.66) | 0.034 * |
Baseline albumin (≥3.5 g/dL vs. <3.5 g/dL) | 0.45 (0.24–0.82) | 0.010 * | ||
Baseline sodium (≥135 mmol/L vs. <135 mmol/L) | 0.37 (0.19–0.72) | 0.004 * | ||
Baseline NLR (≥3.37 vs. <3.37) | 2.52 (1.38–4.59) | 0.003 * | ||
Baseline PLR (≥146.4 vs. <146.4) | 2.58 (1.35–4.90) | 0.004 * | 2.15 (0.93–4.97) | 0.072 |
Recent use of antibiotics within the past 30 days (yes vs. no) | 2.20 (1.21–4.00) | 0.009 * | ||
Differentiation (well or moderately vs. poorly differentiated) | 0.99 (0.47–2.1) | 0.987 | ||
PD-L1 status | ||||
CPS 22C3 (≥10 to <50 vs. ≥50) | 3.47 (1.3–9.24) | 0.013 * | 2.28 (0.74–7.00) | 0.152 |
CPS 22C3 (<10 vs. ≥50) | 5.35 (1.91–15) | 0.001 * | 5.82 (1.78–19.03) | 0.004 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.; Seo, S.; Kim, S.-B.; Song, J.S.; Kim, H.R.; Cho, B.C.; Jung, M.; Kim, C.G.; Hong, M.; Hong, M.H.; et al. Real-World Outcomes and Biomarker Analysis Based on Routine Clinical, Laboratory, and Pathologic Parameters in Metastatic or Unresectable Esophageal Cancer Treated with First-Line Anti-PD-1 Plus Fluoropyrimidine and Platinum. Cancers 2025, 17, 3149. https://doi.org/10.3390/cancers17193149
Jeong J, Seo S, Kim S-B, Song JS, Kim HR, Cho BC, Jung M, Kim CG, Hong M, Hong MH, et al. Real-World Outcomes and Biomarker Analysis Based on Routine Clinical, Laboratory, and Pathologic Parameters in Metastatic or Unresectable Esophageal Cancer Treated with First-Line Anti-PD-1 Plus Fluoropyrimidine and Platinum. Cancers. 2025; 17(19):3149. https://doi.org/10.3390/cancers17193149
Chicago/Turabian StyleJeong, Jiyun, Seyoung Seo, Sung-Bae Kim, Joon Seon Song, Hye Ryun Kim, Byoung Chul Cho, Minkyu Jung, Chang Gon Kim, Moonki Hong, Min Hee Hong, and et al. 2025. "Real-World Outcomes and Biomarker Analysis Based on Routine Clinical, Laboratory, and Pathologic Parameters in Metastatic or Unresectable Esophageal Cancer Treated with First-Line Anti-PD-1 Plus Fluoropyrimidine and Platinum" Cancers 17, no. 19: 3149. https://doi.org/10.3390/cancers17193149
APA StyleJeong, J., Seo, S., Kim, S.-B., Song, J. S., Kim, H. R., Cho, B. C., Jung, M., Kim, C. G., Hong, M., Hong, M. H., & Park, S. R. (2025). Real-World Outcomes and Biomarker Analysis Based on Routine Clinical, Laboratory, and Pathologic Parameters in Metastatic or Unresectable Esophageal Cancer Treated with First-Line Anti-PD-1 Plus Fluoropyrimidine and Platinum. Cancers, 17(19), 3149. https://doi.org/10.3390/cancers17193149