Treatment of Pediatric Acute Lymphoblastic Leukemia: A Historical Perspective
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Dawn of Chemotherapy
3. History of Risk Stratification
4. The Backbone of ALL Treatment
4.1. Remission Induction Therapy
4.2. Consolidation Therapy
4.3. Interim Maintenance Therapy
4.4. Reinduction Therapy
4.5. Maintenance Therapy
5. Other Elements in ALL Treatment
5.1. Choice of Glucocorticoids
5.2. Asparaginase Therapy
5.3. Intrathecal Therapy
5.4. Cranial Radiotherapy
6. Management of ALL in Low- and Middle-Income Countries
7. Future Directions
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Miranda-Filho, A.; Piñeros, M.; Ferlay, J.; Soerjomataram, I.; Monnereau, A.; Bray, F. Epidemiological patterns of leukaemia in 184 countries: A population-based study. Lancet Haematol. 2018, 5, e14–e24. [Google Scholar] [CrossRef]
- Longo, D.L.; Hunger, S.P.; Mullighan, C.G. Acute Lymphoblastic Leukemia in Children. N. Engl. J. Med. 2015, 373, 1541–1552. [Google Scholar]
- Allemani, C.; Matsuda, T.; di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef]
- Seibel, N.L. Acute Lymphoblastic Leukemia: An Historical Perspective. Hematology 2008, 2008, 365. [Google Scholar] [CrossRef] [PubMed]
- Tandon, S. Acute leukemia treatment in low- and middle-income countries: Is it time for tailored therapy? Cancer Res. Stat. Treat. 2020, 3, 642. [Google Scholar] [CrossRef]
- Farber, S.; Diamond, L.K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 1948, 238, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Simone, J.V. History of the treatment of childhood ALL: A paradigm for cancer cure. Best. Pr. Res. Clin. Haematol. 2006, 19, 353–359. [Google Scholar] [CrossRef]
- Frei, E.; Freireich, E.J.; Gehan, E.; Pinkel, D.; Holland, J.F.; Selawry, O.; Haurani, F.; Spurr, C.L.; Hayes, D.M.; James, G.W.; et al. Studies of Sequential and Combination Antimetabolite Therapy in Acute Leukemia: 6-Mercaptopurine and Methotrexate. Blood 1961, 18, 431–454. [Google Scholar] [CrossRef]
- Karon, M.; Freireich, E.J.; Frei, E.; Taylor, R.; Wolman, I.J.; Djerassi, I.; Lee, S.L.; Sawitsky, A.; Hananian, J.; Selawry, O.; et al. The role of vincristine in the treatment of childhood acute leukemia. Clin. Pharmacol. Ther. 1966, 7, 332–339. [Google Scholar] [CrossRef]
- Carbone, P.P.; Bono, V.; Frei, E.; Brindley, C.O. Clinical studies with vincristine. Blood 1963, 21, 640–647. [Google Scholar] [CrossRef]
- Pinkel, D. Five-Year Follow-Up of Total Therapy of Childhood Lymphocytic Leukemia. JAMA 1971, 216, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Aur, R.J.A.; Simone, J.; Hustu, H.O.; Walters, T.; Borella, L.; Pratt, C.; Pinkel, D. Central Nervous System Therapy and Combination Chemotherapy of Childhood Lymphocytic Leukemia. Blood 1971, 37, 272–281. [Google Scholar] [CrossRef]
- Pinkel, D.; Simone, J.; Hustu, H.O.; Aur, R.J. Nine years’ experience with “total therapy” of childhood acute lymphocytic leukemia. Pediatrics 1972, 50, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Carroll, W.L.; Bhojwani, D.; Min, D.-J.; Raetz, E.; Relling, M.; Davies, S.; Downing, J.R.; Willman, C.L.; Reed, J.C. Pediatric Acute Lymphoblastic Leukemia. Hematology 2003, 2003, 102–131. [Google Scholar] [CrossRef] [PubMed]
- Langermann, H.J.; Henze, G.; Wulf, M.; Riehm, H. Estimation of tumor cell mass in childhood acute lymphoblastic leukemia: Prognostic significance and practical application. Klin. Padiatr. 1982, 194, 209–213. [Google Scholar] [CrossRef]
- Smith, M.; Arthur, D.; Camitta, B.; Carroll, A.J.; Crist, W.; Gaynon, P.; Gelber, R.; Heerema, N.; Korn, E.L.; Link, M.; et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J. Clin. Oncol. 1996, 14, 18–24. [Google Scholar] [CrossRef]
- Inaba, H.; Mullighan, C.G. Pediatric acute lymphoblastic leukemia. Haematologica 2020, 105, 2524–2539. [Google Scholar] [CrossRef]
- Matloub, Y.; Stork, L.; Asselin, B.; Hunger, S.P.; Borowitz, M.; Jones, T.; Bostrom, B.; Gastier-Foster, J.M.; Heerema, N.A.; Carroll, A.; et al. Outcome of Children with Standard-Risk T-Lineage Acute Lymphoblastic Leukemia—Comparison among Different Treatment Strategies. Pediatr. Blood Cancer 2016, 63, 255–261. [Google Scholar] [CrossRef]
- Hayashi, R.J.; Winter, S.S.; Dunsmore, K.P.; Devidas, M.; Chen, Z.; Wood, B.L.; Hermiston, M.L.; Teachey, D.T.; Perkins, S.L.; Miles, R.R.; et al. Successful Outcomes of Newly Diagnosed T Lymphoblastic Lymphoma: Results from Children’s Oncology Group AALL0434. J. Clin. Oncol. 2020, 38, 3062–3070. [Google Scholar] [CrossRef]
- Secker-Walker, L.M.; Lawler, S.D.; Hardisty, R.M. Prognostic implications of chromosomal findings in acute lymphoblastic leukaemia at diagnosis. Br. Med. J. 1978, 2, 1529–1530. [Google Scholar] [CrossRef]
- Haas, O.A.; Borkhardt, A. Hyperdiploidy: The longest known, most prevalent, and most enigmatic form of acute lymphoblastic leukemia in children. Leukemia 2022, 36, 2769–2783. [Google Scholar] [CrossRef]
- Moorman, A.V.; Ensor, H.M.; Richards, S.M.; Chilton, L.; Schwab, C.; Kinsey, S.E.; Vora, A.; Mitchell, C.D.; Harrison, C.J. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: Results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol. 2010, 11, 429–438. [Google Scholar] [CrossRef]
- Maloney, K.W.; Devidas, M.; Wang, C.; Mattano, L.A.; Friedmann, A.M.; Buckley, P.; Borowitz, M.J.; Carroll, A.J.; Gastier-Foster, J.M.; Heerema, N.A.; et al. Outcome in Children with Standard-Risk B-Cell Acute Lymphoblastic Leukemia: Results of Children’s Oncology Group Trial AALL0331. J. Clin. Oncol. 2020, 38, 602–612. [Google Scholar] [CrossRef]
- Safavi, S.; Paulsson, K. Near-haploid and low-hypodiploid acute lymphoblastic leukemia: Two distinct subtypes with consistently poor prognosis. Blood 2017, 129, 420–423. [Google Scholar] [CrossRef]
- Harrison, C.J. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br. J. Haematol. 2009, 144, 147–156. [Google Scholar] [CrossRef]
- Riehm, H.; Reiter, A.; Schrappe, M.; Berthold, F.; Dopfer, R.; Gerein, V.; Ludwig, R.; Ritter, J.; Stollmann, B.; Henze, G. Corticosteroid-dependent reduction of leukocyte count in blood as a prognostic factor in acute lymphoblastic leukemia in childhood (therapy study ALL-BFM 83). Klin. Padiatr. 1987, 199, 151–160. [Google Scholar] [CrossRef]
- Miller, D.R.; Leikin, S.; Albo, V.; Sather, H.; Karon, M.; Hammond, D. Prognostic factors and therapy in acute lymphoblastic leukemia of childhood: CCG-141. A report from childrens cancer study group. Cancer 1983, 51, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Conter, V.; Bartram, C.R.; Valsecchi, M.G.; Schrauder, A.; Panzer-Grümayer, R.; Möricke, A.; Aricò, M.; Zimmermann, M.; Mann, G.; Rossi, G.D.; et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: Results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010, 115, 3206–3214. [Google Scholar] [CrossRef] [PubMed]
- Borowitz, M.J.; Devidas, M.; Hunger, S.P.; Bowman, W.P.; Carroll, A.J.; Carroll, W.L.; Linda, S.; Martin, P.L.; Pullen, D.J.; Viswanatha, D.; et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: A Children’s Oncology Group study. Blood 2008, 111, 5477–5485. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, F.; Coustan-Smith, E.; Zhou, Y.; Cheng, C.; Pedrosa, A.; Lins, M.M.; Pedrosa, M.; Lucena-Silva, N.; Ramos, A.M.d.L.; Vinhas, E.; et al. Reduced–dose intensity therapy for pediatric lymphoblastic leukemia: Long-term results of the Recife RELLA05 pilot study. Blood 2020, 135, 1458–1466. [Google Scholar] [CrossRef] [PubMed]
- Frei, E., III; Holland, J.F.; Schneiderman, M.A.; Pinkel, D.; Selkirk, G.; Freireich, E.J.; Silver, R.T.; Gold, G.L.; Regelson, W. A Comparative Study of Two Regimens of Combination Chemotherapy in Acute Leukemia. Blood 1958, 13, 1126–1148. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.P.; Taylor, G.; Sutow, W.W. Treatment of acute leukemia: Current results, and analysis of what we can do now. CA Cancer J. Clin. 1964, 14, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Frei, E., 3rd. Chemotherapy of acute leukemia. CA Cancer J. Clin. 1964, 14, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Selawry, O.S. New treatment schedule with improved survival in childhood leukemia. Intermittent parenteral vs daily oral administration of methotrexate for maintenance of induced remission. Acute leukemia group B. JAMA 1965, 194, 75–81. [Google Scholar]
- Sutow, W.W.; Garcia, F.; Starling, K.A.; Williams, T.E.; Lane, D.M.; Gehan, E.A. L-asparaginase therapy in children with advanced leukemia The Southwest cancer chemotherapy study group. Cancer 1971, 28, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Riehm, H.; Gadner, H.; Welte, K. The west-berlin therapy study of acute lymphoblastic leukemia in childhood—Report after 6 years (author’s transl). Klin. Padiatr. 1977, 189, 89–102. [Google Scholar]
- Schrappe, M.; Möricke, A.; Reiter, A.; Henze, G.; Welte, K.; Gadner, H.; Ludwig, W.D.; Ritter, J.; Harbott, J.; Mann, G.; et al. Key Treatment Questions in Childhood Acute Lymphoblastic Leukemia: Results in 5 Consecutive Trials Performed by the ALL-BFM Study Group From 1981 to 2000. Klin. Padiatr. 2013, 225 (Suppl. S1), S62–S72. [Google Scholar]
- Gadner, H. The life and work of Professor Riehm from a participant’s perspective. Klin. Padiatr. 2013, 225 (Suppl. S1), S3–S4. [Google Scholar] [CrossRef]
- Schrappe, M.; Reiter, A.; Zimmermann, M.; Harbott, J.; Ludwig, W.D.; Henze, G.; Gadner, H.; Odenwald, E.; Riehm, H. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Leukemia 2000, 14, 2205–2222. [Google Scholar] [CrossRef]
- Pui, C.-H.; Mullighan, C.G.; Evans, W.E.; Relling, M.V. Pediatric acute lymphoblastic leukemia: Where are we going and how do we get there? Blood 2012, 120, 1165–1174. [Google Scholar] [CrossRef]
- Schrappe, M.; Reiter, A.; Ludwig, W.D.; Harbott, J.; Zimmermann, M.; Hiddemann, W.; Niemeyer, C.; Henze, G.; Feldges, A.; Zintl, F.; et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: Results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood 2000, 95, 3310–3322. [Google Scholar]
- Tubergen, D.G.; Gilchrist, G.S.; O’Brien, R.T.; Coccia, P.F.; Sather, H.N.; Waskerwitz, M.J.; Hammond, G.D. Improved outcome with delayed intensification for children with acute lymphoblastic leukemia and intermediate presenting features: A Childrens Cancer Group phase III trial. J. Clin. Oncol. 1993, 11, 527–537. [Google Scholar] [CrossRef]
- Gaynon, P.S.; Steinherz, P.G.; Bleyer, W.A.; Ablin, A.R.; Albo, V.C.; Finklestein, J.Z.; Grossman, N.J.; Novak, L.J.; Pyesmany, A.F.; Reaman, G.H. Improved therapy for children with acute lymphoblastic leukemia and unfavorable presenting features: A follow-up report of the Childrens Cancer Group Study CCG-106. J. Clin. Oncol. 1993, 11, 2234–2242. [Google Scholar] [CrossRef]
- Yeoh, A.E.; Ariffin, H.; Chai, E.L.; Kwok, C.S.; Chan, Y.H.; Ponnudurai, K.; Campana, D.; Tan, P.L.; Chan, M.Y.; Kham, S.K.; et al. Minimal residual disease-guided treatment deintensification for children with acute lymphoblastic leukemia: Results from the Malaysia-Singapore acute lymphoblastic leukemia 2003 study. J. Clin. Oncol. 2012, 30, 2384–2392. [Google Scholar] [CrossRef]
- Matloub, Y.; Bostrom, B.C.; Hunger, S.P.; Stork, L.C.; Angiolillo, A.; Sather, H.; La, M.; Gastier-Foster, J.M.; Heerema, N.A.; Sailer, S.; et al. Escalating intravenous methotrexate improves event-free survival in children with standard-risk acute lymphoblastic leukemia: A report from the Children’s Oncology Group. Blood 2011, 118, 243–251. [Google Scholar] [CrossRef]
- Nachman, J.B.; Sather, H.N.; Sensel, M.G.; Trigg, M.E.; Cherlow, J.M.; Lukens, J.N.; Wolff, L.; Uckun, F.M.; Gaynon, P.S. Augmented Post-Induction Therapy for Children with High-Risk Acute Lymphoblastic Leukemia and a Slow Response to Initial Therapy. N. Engl. J. Med. 1998, 338, 1663–1671. [Google Scholar] [CrossRef]
- Seibel, N.L.; Steinherz, P.G.; Sather, H.N.; Nachman, J.B.; DeLaat, C.; Ettinger, L.J.; Freyer, D.R.; Mattano, L.A.; Hastings, C.A.; Rubin, C.M.; et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: A report from the Children’s Oncology Group. Blood 2008, 111, 2548–2555. [Google Scholar] [CrossRef]
- Campbell, M.; Kiss, C.; Zimmermann, M.; Riccheri, C.; Kowalczyk, J.; Felice, M.S.; Kuzmanovic, M.; Kovacs, G.; Kosmidis, H.; Gonzalez, A.; et al. Childhood Acute Lymphoblastic Leukemia: Results of the Randomized Acute Lymphoblastic Leukemia Intercontinental-Berlin-Frankfurt-Münster 2009 Trial. J. Clin. Oncol. 2023, 41, JCO2201760. [Google Scholar] [CrossRef]
- Burke, M.J.; Salzer, W.L.; Devidas, M.; Dai, Y.; Gore, L.; Hilden, J.M.; Larsen, E.; Rabin, K.R.; Zweidler-McKay, P.A.; Borowitz, M.J.; et al. Replacing cyclophosphamide/cytarabine/mercaptopurine with cyclophosphamide/etoposide during consolidation/delayed intensification does not improve outcome for pediatric B-cell acute lymphoblastic leukemia: A report from the COG. Haematologica 2019, 104, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Larsen, E.C.; Devidas, M.; Chen, S.; Salzer, W.L.; Raetz, E.A.; Loh, M.L.; Mattano, L.A., Jr.; Cole, C.; Eicher, A.; Haugan, M.; et al. Dexamethasone and High-Dose Methotrexate Improve Outcome for Children and Young Adults with High-Risk B-Acute Lymphoblastic Leukemia: A Report From Children’s Oncology Group Study AALL0232. J. Clin. Oncol. 2016, 34, 2380–2388. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.S.; Dunsmore, K.P.; Devidas, M.; Wood, B.L.; Esiashvili, N.; Chen, Z.; Eisenberg, N.; Briegel, N.; Hayashi, R.J.; Gastier-Foster, J.M.; et al. Improved Survival for Children and Young Adults With T-Lineage Acute Lymphoblastic Leukemia: Results From the Children’s Oncology Group AALL0434 Methotrexate Randomization. J. Clin. Oncol. 2018, 36, 2926–2934. [Google Scholar] [CrossRef] [PubMed]
- Möricke, A.; Reiter, A.; Zimmermann, M.; Gadner, H.; Stanulla, M.; Dördelmann, M.; Löning, L.; Beier, R.; Ludwig, W.-D.; Ratei, R.; et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: Treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 2008, 111, 4477–4489. [Google Scholar] [CrossRef]
- Ribeiro, R.C.; Conter, V. Optimizing Pediatric Leukemia Care in Countries With Limited Resources. J. Clin. Oncol. 2023, 41, JCO2300451. [Google Scholar] [CrossRef] [PubMed]
- Henze, G.; Langermann, H.; Brämswig, J.; Breu, H.; Gadner, H.; Schellong, G.; Weite, K.; Riehm, H. Ergebnisse der Studie BFM 76/79 zur Behandlung der akuten lymphoblastischen Leukämie bei Kindern und Jugendlichen. Klin. Pädiatrie 1981, 193, 145–154. [Google Scholar] [CrossRef]
- Henze, G.; Langermann, H.J.; Fengler, R.; Brandeis, M.; Evers, K.G.; Gadner, H.; Hinderfeld, L.; Jobke, A.; Kornhuber, B.; Lampert, F.; et al. Acute lymphoblastic leukemia therapy study BFM 79/81 in children and adolescents: Intensified reinduction therapy for patients with different risk for relapse. Klin. Padiatr. 1982, 194, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Schrappe, M.; Bleckmann, K.; Zimmermann, M.; Biondi, A.; Möricke, A.; Locatelli, F.; Cario, G.; Rizzari, C.; Attarbaschi, A.; Valsecchi, M.G.; et al. Reduced-Intensity Delayed Intensification in Standard-Risk Pediatric Acute Lymphoblastic Leukemia Defined by Undetectable Minimal Residual Disease: Results of an International Randomized Trial (AIEOP-BFM ALL 2000). J. Clin. Oncol. 2017, 36, 244–253. [Google Scholar] [CrossRef]
- Locatelli, F.; Valsecchi, M.G.; Möricke, A.; Zimmermann, M.; Gruhn, B.; Biondi, A.; Kulozik, A.E.; Silvestri, D.; Bodmer, N.; Putti, M.C.; et al. Protocol II vs. protocol III given twice during reinduction therapy in children with medium-risk ALL. Blood 2017, 130, 2146–2149. [Google Scholar] [CrossRef] [PubMed]
- Lange, B.J.; Bostrom, B.C.; Cherlow, J.M.; Sensel, M.G.; La, M.K.L.; Rackoff, W.; Heerema, N.A.; Wimmer, R.S.; Trigg, M.E.; Sather, H.N.; et al. Double-delayed intensification improves event-free survival for children with intermediate-risk acute lymphoblastic leukemia: A report from the Children’s Cancer Group. Blood 2002, 99, 825–833. [Google Scholar] [CrossRef]
- Sallan, S.E.; Camitta, B.M.; Frei, E., 3rd; Furman, L.; Leavitt, P.; Bishop, Y.; Jaffe, N. Clinical and cytokinetic aspects of remission induction of childhood acute lymphoblastic leukemia (ALL): Addition of an anthracycline to vincristine and prednisone. Med. Pediatr. Oncol. 1977, 3, 281–287. [Google Scholar] [CrossRef]
- Hyman, C.B.; Borda, E.; Brubaker, C.; Hammond, D.; Sturgeon, P. Prednisone in childhood leukemia; comparison of interrupted with continuous therapy. Pediatrics 1959, 24, 1005–1008. [Google Scholar] [CrossRef]
- Lonsdale, D.; Gehan, E.A.; Fernbach, D.J.; Sullivan, M.P.; Lane, D.M.; Ragab, A.H. Interrupted vs. continued maintenance therapy in childhood acute leukemia. Cancer 1975, 36, 341–352. [Google Scholar] [CrossRef]
- Möricke, A.; Zimmermann, M.; Reiter, A.; Henze, G.; Schrauder, A.; Gadner, H.; Ludwig, W.D.; Ritter, J.; Harbott, J.; Mann, G.; et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010, 24, 265–284. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, G.; Masera, G.; Vecchi, V.; Zanesco, L.; Madon, E.; Mandelli, F.; Massimo, L.; Tognoni, G.; Zurlo, M.G.; Pession, A. Treatment of acute lymphoblastic leukemia in children: The Italian (AIEOP) experience. Bone Marrow Transpl. 1989, 4 (Suppl. 1), 95–97. [Google Scholar]
- Kato, M.; Ishimaru, S.; Seki, M.; Yoshida, K.; Shiraishi, Y.; Chiba, K.; Kakiuchi, N.; Sato, Y.; Ueno, H.; Tanaka, H.; et al. Long-term outcome of 6-month maintenance chemotherapy for acute lymphoblastic leukemia in children. Leukemia 2017, 31, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Teachey, D.T.; Hunger, S.P.; Loh, M.L. Optimizing therapy in the modern age: Differences in length of maintenance therapy in acute lymphoblastic leukemia. Blood 2021, 137, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, W.A.; Sather, H.N.; Nickerson, H.J.; Coccia, P.F.; Finklestein, J.Z.; Miller, D.R.; Littman, P.S.; Lukens, J.N.; Siegel, S.E.; Hammond, G.D. Monthly pulses of vincristine and prednisone prevent bone marrow and testicular relapse in low-risk childhood acute lymphoblastic leukemia: A report of the CCG-161 study by the Childrens Cancer Study Group. J. Clin. Oncol. 1991, 9, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Conter, V.; Valsecchi, M.G.; Silvestri, D.; Campbell, M.; Dibar, E.; Magyarosy, E.; Gadner, H.; Stary, J.; Benoit, Y.; Zimmermann, M.; et al. Pulses of vincristine and dexamethasone in addition to intensive chemotherapy for children with intermediate-risk acute lymphoblastic leukaemia: A multicentre randomised trial. Lancet 2007, 369, 123–131. [Google Scholar] [CrossRef]
- Kato, M.; Okamoto, Y.; Imamura, T.; Kada, A.; Saito, A.M.; Iijima-Yamashita, Y.; Deguchi, T.; Oki, K.; Fukushima, T.; Anami, K.-i.; et al. A Nationwide Clinical Trial ALL-B12: An Optimized Therapy for Pediatric B-Precursor Acute Lymphoblastic Leukemia with Excellent Overall Survival and Minimal Non-Relapse Mortality: A Report from the Japan Children’s Cancer Group. Blood 2023, 142, 519. [Google Scholar] [CrossRef]
- Angiolillo, A.L.; Schore, R.J.; Kairalla, J.A.; Devidas, M.; Rabin, K.R.; Zweidler-McKay, P.; Borowitz, M.J.; Wood, B.; Carroll, A.J.; Heerema, N.A.; et al. Excellent Outcomes With Reduced Frequency of Vincristine and Dexamethasone Pulses in Standard-Risk B-Lymphoblastic Leukemia: Results From Children’s Oncology Group AALL0932. J. Clin. Oncol. 2021, 39, 1437–1447. [Google Scholar] [CrossRef]
- Guolla, L.; Breitbart, S.; Foroutan, F.; Thabane, L.; Loh, M.L.; Teachey, D.T.; Raetz, E.A.; Gupta, S. Impact of vincristine-steroid pulses during maintenance for B-cell pediatric ALL: A systematic review and meta-analysis. Blood 2023, 141, 2944–2954. [Google Scholar]
- Balis, F.M.; Lester, C.M.; Chrousos, G.P.; Heideman, R.L.; Poplack, D.G. Differences in cerebrospinal fluid penetration of corticosteroids: Possible relationship to the prevention of meningeal leukemia. J. Clin. Oncol. 1987, 5, 202–207. [Google Scholar] [CrossRef]
- Inaba, H.; Pui, C.H. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 2010, 11, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Freeman, A.I.; Shuster, J.J.; Jacquillat, C.; Weil, M.; Pochedly, C.; Sinks, L.; Chevalier, L.; Maurer, H.M.; Koch, K.; et al. Lower incidence of meningeal leukemia when prednisone is replaced by dexamethasone in the treatment of acute lymphocytic leukemia. Med. Pediatr. Oncol. 1991, 19, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Bostrom, B.C.; Sensel, M.R.; Sather, H.N.; Gaynon, P.S.; La, M.K.; Johnston, K.; Erdmann, G.R.; Gold, S.; Heerema, N.A.; Hutchinson, R.J.; et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: A report from the Children’s Cancer Group. Blood 2003, 101, 3809–3817. [Google Scholar] [CrossRef] [PubMed]
- Möricke, A.; Zimmermann, M.; Valsecchi, M.G.; Stanulla, M.; Biondi, A.; Mann, G.; Locatelli, F.; Cazzaniga, G.; Niggli, F.; Aricò, M.; et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: Results of the randomized trial AIEOP-BFM ALL 2000. Blood 2016, 127, 2101–2112. [Google Scholar] [CrossRef] [PubMed]
- Silverman, L.B.; Gelber, R.D.; Dalton, V.K.; Asselin, B.L.; Barr, R.D.; Clavell, L.A.; Hurwitz, C.A.; Moghrabi, A.; Samson, Y.; Schorin, M.A.; et al. Improved outcome for children with acute lymphoblastic leukemia: Results of Dana-Farber Consortium Protocol 91-01. Blood 2001, 97, 1211–1218. [Google Scholar] [CrossRef]
- Pui, C.H.; Sandlund, J.T.; Pei, D.; Campana, D.; Rivera, G.K.; Ribeiro, R.C.; Rubnitz, J.E.; Razzouk, B.I.; Howard, S.C.; Hudson, M.M.; et al. Improved outcome for children with acute lymphoblastic leukemia: Results of Total Therapy Study XIIIB at St Jude Children’s Research Hospital. Blood 2004, 104, 2690–2696. [Google Scholar] [CrossRef]
- Mattano, L.A., Jr.; Devidas, M.; Nachman, J.B.; Sather, H.N.; Hunger, S.P.; Steinherz, P.G.; Gaynon, P.S.; Seibel, N.L. Effect of alternate-week versus continuous dexamethasone scheduling on the risk of osteonecrosis in paediatric patients with acute lymphoblastic leukaemia: Results from the CCG-1961 randomised cohort trial. Lancet Oncol. 2012, 13, 906–915. [Google Scholar] [CrossRef]
- Yang, L.; Panetta, J.C.; Cai, X.; Yang, W.; Pei, D.; Cheng, C.; Kornegay, N.; Pui, C.H.; Relling, M.V. Asparaginase may influence dexamethasone pharmacokinetics in acute lymphoblastic leukemia. J. Clin. Oncol. 2008, 26, 1932–1939. [Google Scholar] [CrossRef]
- Hill, J.M.; Roberts, J.; Loeb, E.; Khan, A.; MacLellan, A.; Hill, R.W. L-Asparaginase Therapy for Leukemia and Other Malignant Neoplasms: Remission in Human Leukemia. JAMA 1967, 202, 882–888. [Google Scholar] [CrossRef]
- Avramis, V.I.; Sencer, S.; Periclou, A.P.; Sather, H.; Bostrom, B.C.; Cohen, L.J.; Ettinger, A.G.; Ettinger, L.J.; Franklin, J.; Gaynon, P.S.; et al. A randomized comparison of nativeEscherichia coliasparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: A Children’s Cancer Group study. Blood 2002, 99, 1986–1994. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wildman, K.P.; Basu, S.; Lin, P.L.; Rowntree, C.; Saha, V. The cost-effectiveness of pegaspargase versus native asparaginase for first-line treatment of acute lymphoblastic leukaemia: A UK-based cost-utility analysis. Health Econ. Rev. 2019, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Wang, C.; Raetz, E.A.; Schore, R.; Salzer, W.L.; Larsen, E.C.; Maloney, K.W.; Mattano, L.A., Jr.; Carroll, W.L.; Winick, N.J.; et al. Impact of Asparaginase Discontinuation on Outcome in Childhood Acute Lymphoblastic Leukemia: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2020, 38, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Albertsen, B.K.; Grell, K.; Abrahamsson, J.; Lund, B.; Vettenranta, K.; Jónsson, Ó.G.; Frandsen, T.L.; Wolthers, B.O.; Heyman, M.; Schmiegelow, K. Intermittent Versus Continuous PEG-Asparaginase to Reduce Asparaginase-Associated Toxicities: A NOPHO ALL2008 Randomized Study. J. Clin. Oncol. 2019, 37, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Brigitha, L.J.; Pieters, R.; Sluis, I.M.v.d. How much asparaginase is needed for optimal outcome in childhood acute lymphoblastic leukaemia? A systematic review. Eur. J. Cancer 2021, 157, 238–249. [Google Scholar] [CrossRef]
- Kloos, R.Q.H.; Pieters, R.; Jumelet, F.M.V.; de Groot-Kruseman, H.A.; van den Bos, C.; van der Sluis, I.M. Individualized Asparaginase Dosing in Childhood Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2020, 38, 715–724. [Google Scholar] [CrossRef]
- Matloub, Y.; Lindemulder, S.; Gaynon, P.S.; Sather, H.; La, M.; Broxson, E.; Yanofsky, R.; Hutchinson, R.; Heerema, N.A.; Nachman, J.; et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: Results of the Children’s Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children’s Oncology Group. Blood 2006, 108, 1165–1173. [Google Scholar]
- Salzer, W.L.; Burke, M.J.; Devidas, M.; Dai, Y.; Hardy, K.K.; Kairalla, J.A.; Gore, L.; Hilden, J.M.; Larsen, E.; Rabin, K.R.; et al. Impact of Intrathecal Triple Therapy Versus Intrathecal Methotrexate on Disease-Free Survival for High-Risk B-Lymphoblastic Leukemia: Children’s Oncology Group Study AALL1131. J. Clin. Oncol. 2020, 38, 2628–2638. [Google Scholar] [CrossRef] [PubMed]
- Hvizdala, E.; Berry, D.H.; Chen, T.; Dyment, P.G.; Kim, T.H.; Steuber, C.P.; Sullivan, M.P. Impact of the timing of triple intrathecal therapy on remission induction in childhood acute lymphoblastic leukemia: A Pediatric Oncology Group study. Med. Pediatr. Oncol. 1984, 12, 173–177. [Google Scholar] [CrossRef]
- Yeh, T.-C.; Liang, D.-C.; Hou, J.-Y.; Jaing, T.-H.; Lin, D.-T.; Yang, C.-P.; Peng, C.-T.; Hung, I.-J.; Lin, K.-H.; Hsiao, C.-C.; et al. Treatment of childhood acute lymphoblastic leukemia with delayed first intrathecal therapy and omission of prophylactic cranial irradiation: Results of the TPOG-ALL-2002 study. Cancer 2018, 124, 4538–4547. [Google Scholar] [CrossRef]
- Jeha, S.; Pei, D.; Choi, J.; Cheng, C.; Sandlund, J.T.; Coustan-Smith, E.; Campana, D.; Inaba, H.; Rubnitz, J.E.; Ribeiro, R.C.; et al. Improved CNS Control of Childhood Acute Lymphoblastic Leukemia Without Cranial Irradiation: St Jude Total Therapy Study 16. J. Clin. Oncol. 2019, 37, 3377–3391. [Google Scholar] [CrossRef]
- Simone, J.V. Preventive Central-Nervous-System Therapy in Acute Leukemia. N. Engl. J. Med. 1973, 289, 1248–1249. [Google Scholar] [CrossRef]
- Meadows, A.T.; Gordon, J.; Massari, D.J.; Littman, P.; Fergusson, J.; Moss, K. Declines in IQ scores and cognitive dysfunctions in children with acute lymphocytic leukaemia treated with cranial irradiation. Lancet 1981, 2, 1015–1018. [Google Scholar] [CrossRef]
- Pui, C.H.; Cheng, C.; Leung, W.; Rai, S.N.; Rivera, G.K.; Sandlund, J.T.; Ribeiro, R.C.; Relling, M.V.; Kun, L.E.; Evans, W.E.; et al. Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N. Engl. J. Med. 2003, 349, 640–649. [Google Scholar] [CrossRef]
- Krull, K.R.; Brinkman, T.M.; Li, C.; Armstrong, G.T.; Ness, K.K.; Srivastava, D.K.; Gurney, J.G.; Kimberg, C.; Krasin, M.J.; Pui, C.H.; et al. Neurocognitive outcomes decades after treatment for childhood acute lymphoblastic leukemia: A report from the St Jude lifetime cohort study. J. Clin. Oncol. 2013, 31, 4407–4415. [Google Scholar] [CrossRef]
- Duffner, P.K. Long-term effects of radiation therapy on cognitive and endocrine function in children with leukemia and brain tumors. Neurologist 2004, 10, 293–310. [Google Scholar] [CrossRef]
- Pui, C.-H.; Campana, D.; Pei, D.; Bowman, W.P.; Sandlund, J.T.; Kaste, S.C.; Ribeiro, R.C.; Rubnitz, J.E.; Raimondi, S.C.; Onciu, M.; et al. Treating Childhood Acute Lymphoblastic Leukemia without Cranial Irradiation. N. Engl. J. Med. 2009, 360, 2730–2741. [Google Scholar] [CrossRef]
- Vora, A.; Andreano, A.; Pui, C.-H.; Hunger, S.P.; Schrappe, M.; Moericke, A.; Biondi, A.; Escherich, G.; Silverman, L.B.; Goulden, N.; et al. Influence of Cranial Radiotherapy on Outcome in Children with Acute Lymphoblastic Leukemia Treated With Contemporary Therapy. J. Clin. Oncol. 2016, 34, 919–926. [Google Scholar] [CrossRef]
- Rodriguez-Galindo, C.; Friedrich, P.; Morrissey, L.; Frazier, L. Global challenges in pediatric oncology. Curr. Opin. Pediatr. 2013, 25, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Abboud, M.R.; Ghanem, K.; Muwakkit, S. Acute lymphoblastic leukemia in low and middle-income countries. Curr. Opin. Oncol. 2014, 26, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Ghafoor, T.; Ullah, A.; Naz, S.; Tahir, M.; Ahmed, S.; Arshad, A.; Ali, A.; Khattack, T.A.; Batool, F. Pediatric Acute Lymphoblastic Leukemia: Clinical Characteristics, Treatment Outcomes, and Prognostic Factors: 10 Years’ Experience From a Low- and Middle-Income Country. JCO Glob. Oncol. 2023, 9, e2200288. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.C.; Steliarova-Foucher, E.; Magrath, I.; Lemerle, J.; Eden, T.; Forget, C.; Mortara, I.; Tabah-Fisch, I.; Divino, J.J.; Miklavec, T.; et al. Baseline status of paediatric oncology care in ten low-income or mid-income countries receiving My Child Matters support: A descriptive study. Lancet Oncol. 2008, 9, 721–729. [Google Scholar] [CrossRef]
- Whitlock, J.A. Go with the flow: Simplified MRD in LMIC ALL. Blood 2020, 135, 1414–1415. [Google Scholar] [CrossRef]
- Hao, T.K.; Hiep, P.N.; Hoa, N.T.K.; Ha, C.V. Causes of Death in Childhood Acute Lymphoblastic Leukemia at Hue Central Hospital for 10 Years (2008–2018). Glob. Pediatr. Health 2020, 7, 2333794X20901930. [Google Scholar]
- Howard, S.C.; Pedrosa, M.; Lins, M.; Pedrosa, A.; Pui, C.-H.; Ribeiro, R.C.; Pedrosa, F. Establishment of a Pediatric Oncology Program and Outcomes of Childhood Acute Lymphoblastic Leukemia in a Resource-Poor Area. JAMA 2004, 291, 2471–2475. [Google Scholar] [CrossRef] [PubMed]
- Oh, B.L.Z.; Lee, S.H.R.; Yeoh, A.E.J. Curing the Curable: Managing Low-Risk Acute Lymphoblastic Leukemia in Resource Limited Countries. J. Clin. Med. 2021, 10, 4728. [Google Scholar] [CrossRef]
- Ceppi, F.; Antillon, F.; Pacheco, C.; Sullivan, C.E.; Lam, C.G.; Howard, S.C.; Conter, V. Supportive medical care for children with acute lymphoblastic leukemia in low- and middle-income countries. Expert. Rev. Hematol. 2015, 8, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Caniza, M.A.; Odio, C.; Mukkada, S.; Gonzalez, M.; Ceppi, F.; Chaisavaneeyakorn, S.; Apiwattanakul, N.; Howard, S.C.; Conter, V.; Bonilla, M. Infectious complications in children with acute lymphoblastic leukemia treated in low-middle-income countries. Expert. Rev. Hematol. 2015, 8, 627–645. [Google Scholar] [CrossRef] [PubMed]
- Pui, C.H.; Tang, J.Y.; Yang, J.J.; Chen, S.J.; Chen, Z. International Collaboration to Save Children with Acute Lymphoblastic Leukemia. J. Glob. Oncol. 2019, 5, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.B.; Chen, Y.; Yasui, Y.; Pui, C.H.; Hunger, S.P.; Silverman, L.B.; Ness, K.K.; Green, D.M.; Howell, R.M.; Leisenring, W.M.; et al. Reduced Morbidity and Mortality in Survivors of Childhood Acute Lymphoblastic Leukemia: A Report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 2020, 38, 3418–3429. [Google Scholar] [CrossRef]
- Hijiya, N.; Hudson, M.M.; Lensing, S.; Zacher, M.; Onciu, M.; Behm, F.G.; Razzouk, B.I.; Ribeiro, R.C.; Rubnitz, J.E.; Sandlund, J.T.; et al. Cumulative Incidence of Secondary Neoplasms as a First Event After Childhood Acute Lymphoblastic Leukemia. JAMA 2007, 297, 1207–1215. [Google Scholar] [CrossRef]
- Mulrooney, D.A.; Hyun, G.; Ness, K.K.; Ehrhardt, M.J.; Yasui, Y.; Duprez, D.; Howell, R.M.; Leisenring, W.M.; Constine, L.S.; Tonorezos, E.; et al. Major cardiac events for adult survivors of childhood cancer diagnosed between 1970 and 1999: Report from the Childhood Cancer Survivor Study cohort. BMJ 2020, 368, l6794. [Google Scholar] [CrossRef] [PubMed]
BFM | SR | IR | HR | ||
1. PB day 8: blasts < 1000/μL 2. Age 1–6 years 3. Initial WBC < 20,000/μL 4. If available FC MRD < 0.1% or M1/M2 marrow on day 15 5. No M2/M3 marrow on day 33 All criteria must be fulfilled. | All patients not stratified as SR or HR are intermediate-risk patients | 1. IR and if available FC MRD >10% or M3 marrow on day 15 2. SR if available FC MRD >10% 3. PB on day 8: blasts ≥ 1000/μL 4. M2/M3 marrow on day 33 5. Translocation t(9;22) [BCR::ABL] or t(4;11) [KMT2A::AFF1] 6. Hypodiploidy ≤ 44 At least one criterion must be fulfilled. | |||
COG | SR | HR | |||
Low SR | Average SR | High SR | Age ≥ 10 years and/or WBC ≥ 50,000/µL | ||
Age 1.0–9.99 years, WBC < 50,000/µL | |||||
Triple trisomy OR ETV6::RUNX1 and Day 8 or 15 marrow M1 and Day 29 marrow M1 and Day 29 MRD < 0.1% and no CNS 2/3 or testicular disease | No triple trisomy OR ETV6::RUNX1 and Day 8 or 15 marrow M1 and Day 29 marrow M1 and Day 29 MRD < 0.1% | ANY patient with CNS 3 or testicular disease OR Day 15 marrow M2/M3 OR Day 29 MRD ≥ 0.1–1% OR KMT2A translocation with a RER OR steroid pretreatment (select cases) | Day 8 or 15 marrow M1 and Day 29 marrow M1 and Day 29 MRD < 0.1% and no CNS 3 or testicular disease | Day 15 marrow M2/M3 OR Day 29 MRD ≥0.1–1%, OR CNS 3 or testicular disease OR KMT2A translocation with a RER OR steroid pretreatment (select cases) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, H.; Makimoto, A.; Yuza, Y. Treatment of Pediatric Acute Lymphoblastic Leukemia: A Historical Perspective. Cancers 2024, 16, 723. https://doi.org/10.3390/cancers16040723
Hayashi H, Makimoto A, Yuza Y. Treatment of Pediatric Acute Lymphoblastic Leukemia: A Historical Perspective. Cancers. 2024; 16(4):723. https://doi.org/10.3390/cancers16040723
Chicago/Turabian StyleHayashi, Hiroshi, Atsushi Makimoto, and Yuki Yuza. 2024. "Treatment of Pediatric Acute Lymphoblastic Leukemia: A Historical Perspective" Cancers 16, no. 4: 723. https://doi.org/10.3390/cancers16040723
APA StyleHayashi, H., Makimoto, A., & Yuza, Y. (2024). Treatment of Pediatric Acute Lymphoblastic Leukemia: A Historical Perspective. Cancers, 16(4), 723. https://doi.org/10.3390/cancers16040723