Modeling Global Genomic Instability in Chronic Myeloid Leukemia (CML) Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs)
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Derivation and Characterization of Patient-Derived iPSCs
2.2. iPSC Cultures
2.3. Embryoid Body Assays
2.4. Blast-Colony Forming Assays
2.5. Hematopoietic Differentiation
2.6. Western Blots
2.7. Evaluation of Hematopoietic Cell Phenotypes
2.8. ENU Experiments
2.9. Cytogenetic Analyses
2.10. Micronuclei Analyses
2.11. DNA Extraction
2.12. Array Comparative Genomic Hybridization
2.13. Transcriptome Dataset
2.14. Bioinformatics
3. Results
3.1. Long-Term ENU Exposure Induces an Enhancement of CML-iPSC-Derived Hematopoiesis
3.2. Genomic Instability of CML-iPSC Induced by BCR::ABL1 under ENU Exposure
3.3. CGH Array Analysis of PB32-ENU-Derived Hematopoietic Cells
3.4. Comparison of Genomic Aberrations Identified by CGH in CML-iPSC as Compared to Primary Leukemic Blast Crisis Gene Profiling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sloma, I.; Jiang, X.; Eaves, A.C.; Eaves, C.J. Insights into the Stem Cells of Chronic Myeloid Leukemia. Leukemia 2010, 24, 1823–1833. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kantarjian, H. Chronic Myelogenous Leukemia in Blast Crisis. Analysis of 242 Patients. Am. J. Med. 1987, 83, 445–454. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.G.; Guilhot, F.; Larson, R.A.; Gathmann, I.; Baccarani, M.; Cervantes, F.; Cornelissen, J.J.; Fischer, T.; Hochhaus, A.; Hughes, T.; et al. Imatinib Compared with Interferon and Low-Dose Cytarabine for Newly Diagnosed Chronic-Phase Chronic Myeloid Leukemia. N. Engl. J. Med. 2003, 348, 994–1004. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shah, N.P.; Nicoll, J.M.; Nagar, B.; Gorre, M.E.; Paquette, R.L.; Kuriyan, J.; Sawyers, C.L. Multiple BCR-ABL Kinase Domain Mutations Confer Polyclonal Resistance to the Tyrosine Kinase Inhibitor Imatinib (STI571) in Chronic Phase and Blast Crisis Chronic Myeloid Leukemia. Cancer Cell 2002, 2, 117–125. [Google Scholar] [CrossRef][Green Version]
- Soverini, S.; Colarossi, S.; Gnani, A.; Rosti, G.; Castagnetti, F.; Poerio, A.; Iacobucci, I.; Amabile, M.; Abruzzese, E.; Orlandi, E.; et al. Contribution of ABL Kinase Domain Mutations to Imatinib Resistance in Different Subsets of Philadelphia-Positive Patients: By the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin. Cancer Res. 2006, 12, 7374–7379. [Google Scholar] [CrossRef][Green Version]
- Jain, P.; Kantarjian, H.M.; Ghorab, A.; Sasaki, K.; Jabbour, E.J.; Nogueras Gonzalez, G.; Kanagal-Shamanna, R.; Issa, G.C.; Garcia-Manero, G.; Kc, D.; et al. Prognostic Factors and Survival Outcomes in Patients with Chronic Myeloid Leukemia in Blast Phase in the Tyrosine Kinase Inhibitor Era: Cohort Study of 477 Patients. Cancer 2017, 123, 4391–4402. [Google Scholar] [CrossRef][Green Version]
- Chereda, B.; Melo, J.V. Natural Course and Biology of CML. Ann. Hematol. 2015, 94 (Suppl. 2), S107–S121. [Google Scholar] [CrossRef]
- Crisan, A.M.; Coriu, D.; Arion, C.; Colita, A.; Jardan, C. The Impact of Additional Cytogenetic Abnormalities at Diagnosis and during Therapy with Tyrosine Kinase Inhibitors in Chronic Myeloid Leukaemia. J. Med. Life 2015, 8, 502. [Google Scholar]
- Mitelman, F. The Cytogenetic Scenario of Chronic Myeloid Leukemia. Leuk. Lymphoma 1993, 11, 11–15. [Google Scholar] [CrossRef]
- Perrotti, D.; Jamieson, C.; Goldman, J.; Skorski, T. Chronic Myeloid Leukemia: Mechanisms of Blastic Transformation. J. Clin. Invest. 2010, 120, 2254–2264. [Google Scholar] [CrossRef][Green Version]
- Canitrot, Y.; Lautier, D.; Laurent, G.; Frechet, M.; Ahmed, A.; Turhan, A.G.; Salles, B.; Cazaux, C.; Hoffmann, J.S. Mutator Phenotype of BCR– ABL Transfected Ba/F 3 Cell Lines and Its Association with Enhanced Expression of DNA Polymerase β. Oncogene 1999, 18, 2676–2680. [Google Scholar] [CrossRef][Green Version]
- Koptyra, M.; Cramer, K.; Slupianek, A.; Richardson, C.; Skorski, T. BCR/ABL Promotes Accumulation of Chromosomal Aberrations Induced by Oxidative and Genotoxic Stress. Leukemia 2008, 22, 1969–1972. [Google Scholar] [CrossRef][Green Version]
- Liu, J.; Wang, Z. Increased Oxidative Stress as a Selective Anticancer Therapy. Oxid. Med. Cell. Longev. 2015, 2015, 294303. [Google Scholar] [CrossRef][Green Version]
- Deutsch, E.; Dugray, A.; AbdulKarim, B.; Marangoni, E.; Maggiorella, L.; Vaganay, S.; M’Kacher, R.; Rasy, S.D.; Eschwege, F.; Vainchenker, W.; et al. BCR-ABL down-Regulates the DNA Repair Protein DNA-PKcs. Blood 2001, 97, 2084–2090. [Google Scholar] [CrossRef][Green Version]
- Deutsch, E.; Jarrousse, S.; Buet, D.; Dugray, A.; Bonnet, M.-L.; Vozenin-Brotons, M.-C.; Guilhot, F.; Turhan, A.G.; Feunteun, J.; Bourhis, J. Down-Regulation of BRCA1 in BCR-ABL-Expressing Hematopoietic Cells. Blood 2003, 101, 4583–4588. [Google Scholar] [CrossRef][Green Version]
- Slupianek, A.; Gurdek, E.; Koptyra, M.; Nowicki, M.O.; Siddiqui, K.M.; Groden, J.; Skorski, T. BLM Helicase Is Activated in BCR/ABL Leukemia Cells to Modulate Responses to Cisplatin. Oncogene 2005, 24, 3914–3922. [Google Scholar] [CrossRef][Green Version]
- Canitrot, Y. P210 BCR/ABL Kinase Regulates Nucleotide Excision Repair (NER) and Resistance to UV Radiation. Blood 2003, 102, 2632–2637. [Google Scholar] [CrossRef][Green Version]
- Stoklosa, T.; Poplawski, T.; Koptyra, M.; Nieborowska-Skorska, M.; Basak, G.; Slupianek, A.; Rayevskaya, M.; Seferynska, I.; Herrera, L.; Blasiak, J.; et al. BCR/ABL Inhibits Mismatch Repair to Protect from Apoptosis and Induce Point Mutations. Cancer Res. 2008, 68, 2576–2580. [Google Scholar] [CrossRef][Green Version]
- Branford, S.; Kim, D.D.H.; Apperley, J.F.; Eide, C.A.; Mustjoki, S.; Ong, S.T.; Nteliopoulos, G.; Ernst, T.; Chuah, C.; Gambacorti-Passerini, C.; et al. Laying the Foundation for Genomically-Based Risk Assessment in Chronic Myeloid Leukemia. Leukemia 2019, 33, 1835–1850. [Google Scholar] [CrossRef]
- Ochi, Y. Genetic Landscape of Chronic Myeloid Leukemia. Int. J. Hematol. 2023, 117, 30–36. [Google Scholar] [CrossRef]
- Lerou, P.; Daley, G. Therapeutic Potential of Embryonic Stem Cells. Blood Rev. 2005, 19, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Telliam, G.; Féraud, O.; Griscelli, F.; Opolon, P.; Divers, D.; Bennaceur-Griscelli, A.; Turhan, A.G. Generation of an Induced Pluripotent Stem Cell Line from a Patient with Chronic Myeloid Leukemia (CML) Resistant to Targeted Therapies. Stem Cell Res. 2016, 17, 235–237. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Telliam, G.; Féraud, O.; Baykal-Köse, S.; Griscelli, F.; Imeri, J.; Latsis, T.; Bennaceur-Griscelli, A.; Turhan, A.G. Evidence of Increased Hemangioblastic and Early Hematopoietic Potential in Chronic Myeloid Leukemia (CML)-Derived Induced Pluripotent Stem Cells (IPSC). StemJournal 2022, 4, 13–26. [Google Scholar] [CrossRef]
- Zaguia, N.; Laplagne, E.; Colicchio, B.; Cariou, O.; Al Jawhari, M.; Heidingsfelder, L.; Hempel, W.M.; Jrad, B.B.H.; Jeandidier, E.; Dieterlen, A.; et al. A New Tool for Genotoxic Risk Assessment: Reevaluation of the Cytokinesis-Block Micronucleus Assay Using Semi-Automated Scoring Following Telomere and Centromere Staining. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2020, 850–851, 503143. [Google Scholar] [CrossRef]
- Tong, J.; Qin, L.; Cao, Y.; Li, J.; Zhang, J.; Nie, J.; An, Y. Environmental Radon Exposure and Childhood Leukemia. J. Toxicol. Environ. Health B Crit. Rev. 2012, 15, 332–347. [Google Scholar] [CrossRef]
- Radich, J.P.; Dai, H.; Mao, M.; Oehler, V.; Schelter, J.; Druker, B.; Sawyers, C.; Shah, N.; Stock, W.; Willman, C.L.; et al. Gene Expression Changes Associated with Progression and Response in Chronic Myeloid Leukemia. Proc. Natl. Acad. Sci. USA 2006, 103, 2794–2799. [Google Scholar] [CrossRef][Green Version]
- Culhane, A.C.; Thioulouse, J.; Perrière, G.; Higgins, D.G. MADE4: An R Package for Multivariate Analysis of Gene Expression Data. Bioinformatics 2005, 21, 2789–2790. [Google Scholar] [CrossRef][Green Version]
- Zambon, A.C.; Gaj, S.; Ho, I.; Hanspers, K.; Vranizan, K.; Evelo, C.T.; Conklin, B.R.; Pico, A.R.; Salomonis, N. GO-Elite: A Flexible Solution for Pathway and Ontology over-representation. Bioinformatics 2012, 28, 2209–2210. [Google Scholar] [CrossRef][Green Version]
- Cline, M.S.; Smoot, M.; Cerami, E.; Kuchinsky, A.; Landys, N.; Workman, C.; Christmas, R.; Avila-Campilo, I.; Creech, M.; Gross, B.; et al. Integration of Biological Networks and Gene Expression Data Using Cytoscape. Nat. Protoc. 2007, 2, 2366–2382. [Google Scholar] [CrossRef][Green Version]
- Brancotte, B.; Biton, A.; Bernard-Pierrot, I.; Radvanyi, F.; Reyal, F.; Cohen-Boulakia, S. Gene List Significance At-a-Glance with Gene Valorization. Bioinformatics 2011, 27, 1187–1189. [Google Scholar] [CrossRef][Green Version]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize Implements and Enhances Circular Visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef][Green Version]
- Hu, Y.; Yan, C.; Hsu, C.-H.; Chen, Q.-R.; Niu, K.; Komatsoulis, G.A.; Meerzaman, D. OmicCircos: A Simple-to-Use R Package for the Circular Visualization of Multidimensional Omics Data. Cancer Inform. 2014, 13, 13–20. [Google Scholar] [CrossRef]
- Müller, F.-J.; Laurent, L.C.; Kostka, D.; Ulitsky, I.; Williams, R.; Lu, C.; Park, I.-H.; Rao, M.S.; Shamir, R.; Schwartz, P.H.; et al. Regulatory Networks Define Phenotypic Classes of Human Stem Cell Lines. Nature 2008, 455, 401–405. [Google Scholar] [CrossRef][Green Version]
- Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A Census of Human Cancer Genes. Nat. Rev. Cancer 2004, 4, 177–183. [Google Scholar] [CrossRef]
- Vaquerizas, J.M.; Kummerfeld, S.K.; Teichmann, S.A.; Luscombe, N.M. A Census of Human Transcription Factors: Function, Expression and Evolution. Nat. Rev. Genet. 2009, 10, 252–263. [Google Scholar] [CrossRef]
- Lozzio, C.B.; Lozzio, B.B. Human Chronic Myelogenous Leukemia Cell-Line with Positive Philadelphia Chromosome. Blood 1975, 45, 321–334. [Google Scholar] [CrossRef][Green Version]
- Dimery, I.W.; Ross, D.D.; Testa, J.R.; Gupta, S.K.; Felsted, R.L.; Pollak, A.; Bachur, N.R. Variation amongst K562 Cell Cultures. Exp. Hematol. 1983, 11, 601–610. [Google Scholar]
- Melo, J.V.; Barnes, D.J. Chronic Myeloid Leukaemia as a Model of Disease Evolution in Human Cancer. Nat. Rev. Cancer 2007, 7, 441–453. [Google Scholar] [CrossRef]
- Ko, T.K.; Javed, A.; Lee, K.L.; Pathiraja, T.N.; Liu, X.; Malik, S.; Soh, S.X.; Heng, X.T.; Takahashi, N.; Tan, J.H.J.; et al. An Integrative Model of Pathway Convergence in Genetically Heterogeneous Blast Crisis Chronic Myeloid Leukemia. Blood 2020, 135, 2337–2353. [Google Scholar] [CrossRef]
- Dash, A.B.; Williams, I.R.; Kutok, J.L.; Tomasson, M.H.; Anastasiadou, E.; Lindahl, K.; Li, S.; Van Etten, R.A.; Borrow, J.; Housman, D.; et al. A Murine Model of CML Blast Crisis Induced by Cooperation between BCR/ABL and NUP98/HOXA9. Proc. Natl. Acad. Sci. USA 2002, 99, 7622–7627. [Google Scholar] [CrossRef][Green Version]
- Neering, S.J.; Bushnell, T.; Sozer, S.; Ashton, J.; Rossi, R.M.; Wang, P.-Y.; Bell, D.R.; Heinrich, D.; Bottaro, A.; Jordan, C.T. Leukemia Stem Cells in a Genetically Defined Murine Model of Blast-Crisis CML. Blood 2007, 110, 2578–2585. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sloma, I.; Beer, P.; Desterke, C.; Bulaeva, E.; Bilenky, M.; Carles, A.; Moksa, M.; Raghuram, K.; Brimacombe, C.; Lambie, K.; et al. Epigenetic and Functional Changes Imposed by NUP98-HOXA9 in a Genetically Engineered Model of Chronic Myeloid Leukemia Progression. Haematologica 2021, 106, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Papapetrou, E.P. Modeling Myeloid Malignancies with Patient-Derived IPSCs. Exp. Hematol. 2019, 71, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Arozena, A.; Wells, S.; Potter, P.; Kelly, M.; Cox, R.D.; Brown, S.D.M. ENU Mutagenesis, a Way Forward to Understand Gene Function. Annu. Rev. Genomics Hum. Genet. 2008, 9, 49–69. [Google Scholar] [CrossRef]
- Aggoune, D.; Tosca, L.; Sorel, N.; Bonnet, M.-L.; Dkhissi, F.; Tachdjian, G.; Bennaceur-Griscelli, A.; Chomel, J.-C.; Turhan, A.G. Modeling the Influence of Stromal Microenvironment in the Selection of ENU-Induced BCR-ABL1 Mutants by Tyrosine Kinase Inhibitors. Oncoscience 2014, 1, 57. [Google Scholar] [CrossRef][Green Version]
- Kreil, S.; Pfirrmann, M.; Haferlach, C.; Waghorn, K.; Chase, A.; Hehlmann, R.; Reiter, A.; Hochhaus, A.; Cross, N.C.P.; for the German Chronic Myelogenous Leukemia (CML) Study Group. Heterogeneous Prognostic Impact of Derivative Chromosome 9 Deletions in Chronic Myelogenous Leukemia. Blood 2007, 110, 1283–1290. [Google Scholar] [CrossRef][Green Version]
- Huntly, B.J.; Bench, A.J.; Delabesse, E.; Reid, A.G.; Li, J.; Scott, M.A.; Campbell, L.; Byrne, J.; Pinto, E.; Brizard, A.; et al. Derivative Chromosome 9 Deletions in Chronic Myeloid Leukemia: Poor Prognosis Is Not Associated with Loss of ABL-BCR expression, Elevated BCR-ABL Levels, or Karyotypic Instability. Blood 2002, 99, 4547–4553. [Google Scholar] [CrossRef][Green Version]
- Reid, A.G.; Huntly, B.J.; Hennig, E.; Niederwieser, D.; Campbell, L.J.; Bown, N.; Telford, N.; Walker, H.; Grace, C.D.; Deininger, M.W.; et al. Deletions of the Derivative Chromosome 9 Do Not Account for the Poor Prognosis Associated with Philadelphia-Positive Acute Lymphoblastic Leukemia. Blood 2002, 99, 2274–2275. [Google Scholar] [CrossRef][Green Version]
- Storlazzi, C.T.; Anelli, L.; Surace, C.; Rocchi, M.; Albano, F.; Pastore, D.; Liso, V.; Specchia, G. Molecular Cytogenetic Characterization of a Novel Additional Chromosomal Aberration in Blast Crisis of a Ph-Positive Chronic Myeloid Leukemia. Cancer Genet. Cytogenet. 2002, 134, 109–113. [Google Scholar] [CrossRef]
- Terradas, M.; Martín, M.; Tusell, L.; Genescà, A. Genetic Activities in Micronuclei: Is the DNA Entrapped in Micronuclei Lost for the Cell? Mutat. Res. Mutat. Res. 2010, 705, 60–67. [Google Scholar] [CrossRef]
- Kuramoto, K.; Ban, S.; Oda, K.; Tanaka, H.; Kimura, A.; Suzuki, G. Chromosomal Instability and Radiosensitivity in Myelodysplastic Syndrome Cells. Leukemia 2002, 16, 2253–2258. [Google Scholar] [CrossRef][Green Version]
- Ehninger, A.; Kramer, M.; Röllig, C.; Thiede, C.; Bornhäuser, M.; von Bonin, M.; Wermke, M.; Feldmann, A.; Bachmann, M.; Ehninger, G.; et al. Distribution and Levels of Cell Surface Expression of CD33 and CD123 in Acute Myeloid Leukemia. Blood Cancer J. 2014, 4, e218. [Google Scholar] [CrossRef][Green Version]
- Nievergall, E.; Ramshaw, H.S.; Yong, A.S.; Biondo, M.; Busfield, S.J.; Vairo, G.; Lopez, A.F.; Hughes, T.P.; White, D.L.; Hiwase, D.K. Monoclonal Antibody Targeting of IL-3 Receptor α with CSL362 Effectively Depletes CML Progenitor and Stem Cells. Blood 2014, 123, 1218–1228. [Google Scholar] [CrossRef][Green Version]
- Matsuura, S.; Yan, M.; Lo, M.-C.; Ahn, E.-Y.; Weng, S.; Dangoor, D.; Matin, M.; Higashi, T.; Feng, G.-S.; Zhang, D.-E. Negative Effects of GM-CSF Signaling in a Murine Model of t(8;21)-Induced Leukemia. Blood 2012, 119, 3155–3163. [Google Scholar] [CrossRef]
- Xu, Y. Immunophenotypic Identification of Acute Myeloid Leukemia with Monocytic Differentiation. Leukemia 2006, 20, 1321–1324. [Google Scholar] [CrossRef][Green Version]
iPSC Line | # of Chromosome Involved | Mitosis Ratio | % |
---|---|---|---|
PB32 + ENU (Ph1+) | 21 | 5 loss/64 | 8 |
9 | 3 loss/64 | 5 | |
17 | 1 loss/64 | >2 | |
19 | 1 loss/64 | >2 | |
20 | 1 loss/64 | >2 | |
13 | 1 loss/64 | >2 | |
1 | 1 loss/64 | >2 | |
2 | 1 loss/64 | >2 | |
PB32 without ENU (Ph1+) | None | / | / |
PB33 + ENU (Ph1-neg) | None | / | / |
PB33 without ENU (Ph1-neg) | None | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telliam, G.; Desterke, C.; Imeri, J.; M’kacher, R.; Oudrhiri, N.; Balducci, E.; Fontaine-Arnoux, M.; Acloque, H.; Bennaceur-Griscelli, A.; Turhan, A.G. Modeling Global Genomic Instability in Chronic Myeloid Leukemia (CML) Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Cancers 2023, 15, 2594. https://doi.org/10.3390/cancers15092594
Telliam G, Desterke C, Imeri J, M’kacher R, Oudrhiri N, Balducci E, Fontaine-Arnoux M, Acloque H, Bennaceur-Griscelli A, Turhan AG. Modeling Global Genomic Instability in Chronic Myeloid Leukemia (CML) Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Cancers. 2023; 15(9):2594. https://doi.org/10.3390/cancers15092594
Chicago/Turabian StyleTelliam, Gladys, Christophe Desterke, Jusuf Imeri, Radhia M’kacher, Noufissa Oudrhiri, Estelle Balducci, Micheline Fontaine-Arnoux, Hervé Acloque, Annelise Bennaceur-Griscelli, and Ali G. Turhan. 2023. "Modeling Global Genomic Instability in Chronic Myeloid Leukemia (CML) Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs)" Cancers 15, no. 9: 2594. https://doi.org/10.3390/cancers15092594
APA StyleTelliam, G., Desterke, C., Imeri, J., M’kacher, R., Oudrhiri, N., Balducci, E., Fontaine-Arnoux, M., Acloque, H., Bennaceur-Griscelli, A., & Turhan, A. G. (2023). Modeling Global Genomic Instability in Chronic Myeloid Leukemia (CML) Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Cancers, 15(9), 2594. https://doi.org/10.3390/cancers15092594