Clinical Characterization of a Table Mounted Range Shifter Board for Synchrotron-Based Intensity Modulated Proton Therapy for Pediatric Craniospinal Irradiation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Proton Delivery System
2.2. RSB Design
2.3. Measurements
2.3.1. Mechanical Verification
2.3.2. Relative Linear Stopping Power (RLSP)
2.3.3. Output Constancy
2.3.4. Image Quality
2.3.5. Penumbra and Range in an Anthropomorphic Phantom
2.4. Dose Evaluation in Pediatric CSI Patients
3. Results
3.1. Mechanical Verification
3.2. Relative Linear Stopping Power (RLSP)
3.3. Output Constancy
3.4. Image Quality
3.5. Penumbra and Range Measurements in an Anthropomorphic Phantom
3.6. RSB in Pediatric CSI Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michalski, J.M.; Klein, E.E.; Gerber, R. Method to plan, administer, and verify supine craniospinal irradiation. J. Appl. Clin. Med. Phys. 2002, 3, 310–316. [Google Scholar] [CrossRef]
- Yuh, G.E.; Loredo, L.N.; Yonemoto, L.T.; Bush, D.A.; Shahnazi, K.; Preston, W.; Slater, J.M.; Slater, J.D. Reducing toxicity from craniospinal irradiation: Using proton beams to treat medulloblastoma in young children. Cancer J. 2004, 10, 386. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.T.; Bilton, S.D.; Famiglietti, R.M.; Riley, B.A.; Mahajan, A.; Chang, E.L.; Maor, M.H.; Woo, S.Y.; Cox, J.D.; Smith, A.R. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: How do protons compare with other conformal techniques? Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 362–372. [Google Scholar] [CrossRef]
- Bernier, V.; Klein, O. Late effects of craniospinal irradiation for medulloblastomas in paediatric patients. Neurochirurgie 2021, 67, 83–86. [Google Scholar] [CrossRef]
- Zhang, R.; Howell, R.M.; Taddei, P.J.; Giebeler, A.; Mahajan, A.; Newhauser, W.D. A comparative study on the risks of radiogenic second cancers and cardiac mortality in a set of pediatric medulloblastoma patients treated with photon or proton craniospinal irradiation. Radiother. Oncol. 2014, 113, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.; Shin, D.H.; Kim, J.; Kim, J.W.; Kim, D.W.; Park, S.Y.; Lee, S.B.; Kim, J.Y.; Park, H.-J.; Park, B.; et al. Craniospinal Irradiation Techniques: A Dosimetric Comparison of Proton Beams with Standard and Advanced Photon Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Seravalli, E.; Bosman, M.; Lassen-Ramshad, Y.; Vestergaard, A.; Oldenburger, F.; Visser, J.; Koutsouveli, E.; Paraskevopoulou, C.; Horan, G.; Ajithkumar, T.; et al. Dosimetric comparison of five different techniques for craniospinal irradiation across 15 European centers: Analysis on behalf of the SIOP-E-BTG (radiotherapy working group). Acta Oncol. 2018, 57, 1240–1249. [Google Scholar] [CrossRef]
- Lomax, A.J.; Böhringer, T.; Bolsi, A.; Coray, D.; Emert, F.; Goitein, G.; Jermann, M.; Lin, S.; Pedroni, E.; Rutz, H.; et al. Treatment planning and verification of proton therapy using spot scanning: Initial experiences. Med. Phys. 2004, 31, 3150–3157. [Google Scholar] [CrossRef]
- Lin, H.; Ding, X.; Kirk, M.; Liu, H.; Zhai, H.; Hill-Kayser, C.E.; Lustig, R.A.; Tochner, Z.; Both, S.; McDonough, J. Supine craniospinal irradiation using a proton pencil beam scanning technique without match line changes for field junctions. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 71–78. [Google Scholar] [CrossRef]
- Farace, P.; Bizzocchi, N.; Righetto, R.; Fellin, F.; Fracchiolla, F.; Lorentini, S.; Widesott, L.; Algranati, C.; Rombi, B.; Vennarini, S.; et al. Supine craniospinal irradiation in pediatric patients by proton pencil beam scanning. Radiother. Oncol. 2017, 123, 112–118. [Google Scholar] [CrossRef]
- Winterhalter, C.; Lomax, A.J.; Oxley, D.; Weber, D.C.; Safai, S. A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy. Phys. Med. Biol. 2018, 63, 025022. [Google Scholar] [CrossRef]
- Safai, S.; Bortfeld, T.; Engelsman, M. Comparison between the lateral penumbra of a collimated double-scattered beam and uncollimated scanning beam in proton radiotherapy. Phys. Med. Biol. 2008, 53, 1729–1750. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Shi, C.; Huang, S.; Shen, J.; Kang, M.; Chen, Q.; Zhai, H.; McDonough, J.; Tochner, Z.; Deville, C.; et al. Applications of various range shifters for proton pencil beam scanning radiotherapy. Radiat. Oncol. 2021, 16, 146. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, B.; Koehler, A.; Schneider, R.; Sisterson, J.; Wagner, M. Multiple Coulomb scattering of 160 MeV protons. Nucl. Instrum. Methods Phys. Res. B 1993, 74, 467–490. [Google Scholar] [CrossRef]
- Both, S.; Shen, J.; Kirk, M.; Lin, L.; Tang, S.; Alonso-Basanta, M.; Lustig, R.; Lin, H.; Deville, C.; Hill-Kayser, C.; et al. Development and clinical implementation of a universal bolus to maintain spot size during delivery of base of skull pencil beam scanning proton therapy. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 79–84. [Google Scholar] [CrossRef]
- Michiels, S.; Barragán, A.M.; Souris, K.; Poels, K.; Crijns, W.; Lee, J.A.; Sterpin, E.; Nuyts, S.; Haustermans, K.; Depuydt, T. Patient-specific bolus for range shifter air gap reduction in intensity-modulated proton therapy of head-and-neck cancer studied with Monte Carlo based plan optimization. Radiother. Oncol. 2018, 128, 161–166. [Google Scholar] [CrossRef]
- Kang, M.; Hasan, S.; Press, R.H.; Yu, F.; Abdo, M.; Xiong, W.; Choi, J.I.; Ii, C.B.S.; Lin, H. Using patient-specific bolus for pencil beam scanning proton treatment of periorbital disease. J. Appl. Clin. Med. Phys. 2021, 22, 203–209. [Google Scholar] [CrossRef]
- Azcona, J.-D.; Aguilar, B.; Perales, Á.; Polo, R.; Zucca, D.; Irazola, L.; Viñals, A.; Cabello, P.; Delgado, J.-M.; Pedrero, D.; et al. Commissioning of a synchrotron-based proton beam therapy system for use with a Monte Carlo treatment planning system. Radiat. Phys. Chem. 2023, 204, 110708. [Google Scholar] [CrossRef]
- Gillin, M.T.; Sahoo, N.; Bues, M.; Ciangaru, G.; Sawakuchi, G.; Poenisch, F.; Arjomandy, B.; Martin, C.; Titt, U.; Suzuki, K.; et al. Commissioning of the discrete spot scanning proton beam delivery system at The University of Texas MD Anderson Cancer Center, Proton Therapy Center, Houston. Med. Phys. 2010, 37, 154–163. [Google Scholar] [CrossRef]
- Wong, R.X.; Faught, J.; Gargone, M.; Myers, W.; Krasin, M.; Faught, A.; Acharya, S. Cardiac-sparing and breast-sparing whole lung irradiation using intensity-modulated proton therapy. Int. J. Part. Ther. 2021, 7, 65–73. [Google Scholar] [CrossRef]
- Arjomandy, B.; Taylor, P.; Ainsley, C.; Safai, S.; Sahoo, N.; Pankuch, M.; Farr, J.B.; Park, S.Y.; Klein, E.; Flanz, J.; et al. AAPM task group 224: Comprehensive proton therapy machine quality assurance. Med. Phys. 2019, 46, e678–e705. [Google Scholar] [CrossRef]
- Niroomand-Rad, A.; Chiu-Tsao, S.; Grams, M.P.; Lewis, D.F.; Soares, C.G.; Van Battum, L.J.; Das, I.J.; Trichter, S.; Kissick, M.W.; Massillon-Jl, G.; et al. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55. Med. Phys. 2020, 47, 5986–6025. [Google Scholar] [CrossRef] [PubMed]
- Kirby, D.; Green, S.; Palmans, H.; Hugtenburg, R.; Wojnecki, C.; Parker, D. LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry. Phys. Med. Biol. 2010, 55, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Stoker, J.B.; Grant, J.; Zhu, X.R.; Pidikiti, R.; Mahajan, A.; Grosshans, D.R. Intensity modulated proton therapy for craniospinal irradiation: Organ-at-risk exposure and a low-gradient junctioning technique. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Liu, W.; Anand, A.; Stoker, J.B.; Ding, X.; Fatyga, M.; Herman, M.G.; Bues, M. Impact of range shifter material on proton pencil beam spot characteristics. Med. Phys. 2015, 42, 1335–1340. [Google Scholar] [CrossRef]
- Miralbell, R.; Lomax, A.; Cella, L.; Schneider, U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int. J. Radiat. Oncol. 2002, 54, 824–829. [Google Scholar] [CrossRef]
- Newhauser, W.D.; Fontenot, J.D.; Mahajan, A.; Kornguth, D.; Stovall, M.; Zheng, Y.; Taddei, P.; Mirkovic, D.; Mohan, R.; Cox, J.D.; et al. The risk of developing a second cancer after receiving craniospinal proton irradiation. Phys. Med. Biol. 2009, 54, 2277–2291. [Google Scholar] [CrossRef]
- Kern, A.; Bäumer, C.; Kröninger, K.; Wulff, J.; Timmermann, B. Impact of air gap, range shifter, and delivery technique on skin dose in proton therapy. Med. Phys. 2021, 48, 831–840. [Google Scholar] [CrossRef]
- Sorriaux, J.; Testa, M.; Paganetti, H.; de Xivry, J.O.; Lee, J.; Traneus, E.; Souris, K.; Vynckier, S.; Sterpin, E. Experimental assessment of proton dose calculation accuracy in inhomogeneous media. Phys. Med. 2017, 38, 10–15. [Google Scholar] [CrossRef]
- Almurayshid, M.M. Evaluation of Photography of a Plastic Scintillator for Quality Assurance in Radiation Therapy. Ph.D. Thesis, UCL (University College London), London, UK, 2016. [Google Scholar]
Energy (MeV) | R80 (mm) | Pull-Back (mm) | |||
---|---|---|---|---|---|
Open Beam | RSB—Head | RSB—Spine | RSB—Head | RSB—Spine | |
93.1 | 66.50 | 25.10 | 25.36 | 41.40 | 41.14 |
108.3 | 88.08 | 47.06 | 47.33 | 41.03 | 40.75 |
146.1 | 150.76 | 110.11 | 110.27 | 40.66 | 40.49 |
203.0 | 267.97 | 227.71 | 227.92 | 40.26 | 40.05 |
Mean ± SD | - | - | - | 40.84 ± 0.49 | 40.61 ± 0.46 |
No RSB | RSB | Difference | |
---|---|---|---|
Heterogeneity (HUmax–HUmin) | 20.8 | 157.1 | 136.3 |
Mean HU Across Inserts | −50.5 | −137.4 | −86.8 |
Max. Visible Line Pairs (lp/cm) | 7 | 7 | 0 |
Patient 1 | Patient 2 | Mean | ||||
---|---|---|---|---|---|---|
MRS | RSB | MRS | RSB | MRS | RSB | |
Kidney Dmean (Gy[RBE]) | 3.1 | 1.6 | 4.7 | 1.7 | 3.9 | 1.7 |
Lung Dmean (Gy[RBE]) | 4.3 | 2.1 | 3.9 | 2.3 | 4.1 | 2.2 |
Kidney Penumbra (mm) | 13.0 | 7.0 | 15.0 | 7.0 | 14.0 | 7.0 |
Lung Penumbra (mm) | 14.0 | 10.0 | 17.0 | 11.0 | 15.5 | 10.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrinivich, W.T.; Li, H.; Tran, A.; Acharya, S.; Ladra, M.M.; Sheikh, K. Clinical Characterization of a Table Mounted Range Shifter Board for Synchrotron-Based Intensity Modulated Proton Therapy for Pediatric Craniospinal Irradiation. Cancers 2023, 15, 2882. https://doi.org/10.3390/cancers15112882
Hrinivich WT, Li H, Tran A, Acharya S, Ladra MM, Sheikh K. Clinical Characterization of a Table Mounted Range Shifter Board for Synchrotron-Based Intensity Modulated Proton Therapy for Pediatric Craniospinal Irradiation. Cancers. 2023; 15(11):2882. https://doi.org/10.3390/cancers15112882
Chicago/Turabian StyleHrinivich, William T., Heng Li, Anh Tran, Sahaja Acharya, Matthew M. Ladra, and Khadija Sheikh. 2023. "Clinical Characterization of a Table Mounted Range Shifter Board for Synchrotron-Based Intensity Modulated Proton Therapy for Pediatric Craniospinal Irradiation" Cancers 15, no. 11: 2882. https://doi.org/10.3390/cancers15112882
APA StyleHrinivich, W. T., Li, H., Tran, A., Acharya, S., Ladra, M. M., & Sheikh, K. (2023). Clinical Characterization of a Table Mounted Range Shifter Board for Synchrotron-Based Intensity Modulated Proton Therapy for Pediatric Craniospinal Irradiation. Cancers, 15(11), 2882. https://doi.org/10.3390/cancers15112882